In this study, an efficient strategy for the synthesis of solvent titanium dioxide and titanium dioxide/graphitic carbon nitride (TiO2/g-C3N4) heterostructure photocatalyst was applied to fabricate a kind of visible-light-driven photocatalyst. The obtained samples were characterised by means of X-ray diffraction, infrared spectroscopy, ultraviolet–visible spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy and photoluminescence. The heterostructure shows higher absorption edge towards harvesting more solar energy compared with pure TiO2 and pure g-C3N4 respectively. The photocatalytic behaviour under visible light and kinetics of the TiO2/g-C3N4 catalyst via methylene blue degradation were addressed. The results showed that the introduction of solvent titanium dioxide into g-C3N4 enhanced the photocatalytic activity in the visible light region. TiO2/g-C3N4 is potential visible light driven photocatalyst for the organic substances degradation in aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.