This paper comprehensively investigates the performance of the D2D underlaying cellular networks where D2D communications are operated concurrently with cellular networks provided that the aggregate interference measured on licensed users is strictly guaranteed. In particular, we derive the outage probability (OP), the average rate, and the amount of fading (AoF) of the D2D networks in closed-form expressions under three distinct power allocation schemes, i.e., the path-loss-based, equal, and random allocation schemes. It is noted that the considered networks take into consideration the impact of the intra-D2D networks, the inter-interference from the cellular networks and background noise, thus involving many random variables and leading to a complicated mathematical framework. Moreover, we also reveal the behavior of the OP with respect to the transmit power based on the rigorous mathematical frameworks rather than the computer-based simulation results. The derived framework shows that increasing the transmit power is beneficial for the OP of the D2D users. Regarding the cellular networks, the coverage probability (Pcov) of the cellular users is computed in closed-form expression too. Monte Carlo simulations are given to verify the accuracy of the proposed mathematical frameworks. Our findings illustrate that the power allocation method based on prior path-loss information outperforms the other methods in the average sum rate.
This paper considers a system consisting of a nonorthogonal multiple access (NOMA)-based device-to-device (D2D) communication system within a cellular network, in which the time and frequency resources are shared by everyone. In particular, D2D groups that constitute different pairs are assigned to the subchannels that the cellular users occupy. A max–min fairness optimization problem with power budget constraints is formulated and solved in this paper to reduce the mutual interference between the cellular users and D2D devices that substantially impacts that with the worst channel condition. For a low computational complexity solution, we propose the use of the bisection method together with the solution of a system of linear equalities. The proposed algorithm can provide uniformly good service to all of the cellular users and D2D devices in the coverage area by utilizing the minimal total transmit power. The simulation results indicate the effectiveness of the proposed algorithm in the improvement of the spectral efficiency of the worst user under the different widely used subchannel assignments and pairing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.