D-Lactate dehydrogenase (D-LDH) is a membrane-associated respiratory enzyme of Escherichia coli.The protein is composed of 571 amino acid residues with a flavin adenine dinucleotide (FAD) cofactor, has a molecular weight of approximately 65,000, and requires lipids or detergents for full activity. We used NMR spectroscopy to investigate the structure of D-LDH and its interaction with phospholipids. We incorporated 5-fluorotryptophan (SF-Trp) into the native enzyme, which contains five tryptophan residues, and into mutant enzymes, where a sixth tryptophan is substituted into a specific site by oligonucleotide-directed mutagenesis, and studied the SF-Trp-labeled enzymes using I9F-NMR spectroscopy. In this way, information was obtained about the local environment at each native and substituted tryptophan site. Using a nitroxide spin-labeled fatty acid, which broadens the resonance from any residue within 15 A , we have established that the membrane-binding area of the protein includes the region between Tyr 228 and Phe 369, but is not continuous within this region. This conclusion is strengthened by the results of I9F-NMR spectroscopy of wild-type enzyme labeled with fluorotyrosine or fluorophenylalanine in the presence and absence of a nitroxide spin-labeled fatty acid. These experiments indicate that 9-10 Phe and 3-4 Tyr residues are located near the lipid phase.
Metabolic crenation of red cells is reversible; on addition of nutrients, echinocytes recover the normal discoid shape. When the shape recovery takes place in the presence of reducing agents such as dithiothreitol (DTT), morphological change continues until the cells are stomatocytic. The degree of stomatocytosis varies, depending on the cell morphology when the nutrients and reducing agent are added. DTT has minimal effect on the shape of normal discocytes, but in its presence, mildly echinocytic cells become slightly cupped and advanced- stage echinocytes become severely stomatocytic. DTT must be present continuously for development and retention of stomatocytosis; echinocytes preincubated with or metabolically depleted in DTT do not become stomatocytic when supplemented in the absence of DTT, and DTT- induced stomatocytes revert to discocytes when the reducing agent is removed. DTT has no effect on adenosine triphosphate synthesis or equilibrium cell glutathione levels, and the induced stomatocytosis is not inhibited by excluding oxygen from cells during depletion. Spectrin phosphorylation and phosphate turnover are not affected by DTT. The echinocyte-to-discocyte transformation coincides with phosphorylation of membrane inner monolayer lipids (diacylglycerol to phosphatidic acid and phosphatidylinositol to phosphatidylinositol-4,5-bisphosphate). Overphosphorylation of these phospholipids is not responsible for the exaggerated shape recovery seen with reducing agents; phosphorylation of inner monolayer lipids proceeds identically in the presence and absence of DTT.
The interaction with phospholipid vesicles of the membrane-bound respiratory enzyme D-lactate dehydrogenase of Escherichia coli has been studied. Proteolytic digestion studies show that D-lactate dehydrogenase is protected from trypsin digestion to a larger extent when it interacts with phosphatidylglycerol than with phosphatidylcholine vesicles. Wild-type D-lactate dehydrogenase and mutants in which an additional tryptophan is substituted in selected areas by site-specific oligonucleotide-directed mutagenesis have been labeled with 5-fluorotryptophan. 19F nuclear magnetic resonance studies of the interaction of these labeled enzymes with small unilamellar phospholipid vesicles show that Trp 243, 340, and 361 are exposed to the lipid phase, while Trp 384, 407, and 567 are accessible to the external aqueous phase. Reconstitution of enzymatic activity in phospholipid vesicles has been studied by adding enzyme and substrate to phospholipid vesicles containing a spin-labeled fatty acid as an electron acceptor. The reduction of the doxyl group of the spin-labeled fatty acid has been monitored indirectly by nuclear magnetic resonance and directly by electron paramagnetic resonance. These results indicate that an artificial electron-transfer system can be created by mixing D-lactate dehydrogenase and D-lactate together with phospholipid vesicles containing spin-labeled fatty acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.