The damage of buildings and manmade structures, where most of human activities occur, is the major cause of casualties of from earthquakes. In this paper, an improved technique, Earthquake Damage Visualization (EDV) is presented for the rapid detection of earthquake damage using the Synthetic Aperture Radar (SAR) data. The EDV is based on the pre-seismic and co-seismic coherence change method. The normalized difference between the pre-seismic and co-seismic coherences, and vice versa, are used to calculate the forward (from pre-seismic to co-seismic) and backward (from co-seismic to pre-seismic) change parameters, respectively. The backward change parameter is added to visualize the retrospective changes caused by factors other than the earthquake. The third change-free parameter uses the average values of the pre-seismic and co-seismic coherence maps. These three change parameters were ultimately merged into the EDV as an RGB (Red, Green, and Blue) composite imagery. The EDV could visualize the earthquake damage efficiently using Horizontal transmit and Horizontal receive (HH), and Horizontal transmit and Vertical receive (HV) polarizations data from the Advanced Land Observing Satellite-2 (ALOS-2). Its performance was evaluated in the Kathmandu Valley, which was hit severely by the 2015 Nepal Earthquake. The cross-validation results showed that the EDV is more sensitive to the damaged buildings than the existing method. The EDV could be used for building damage detection in other earthquakes as well.
The potential of ALOS-2 SAR data for the estimation of tropical forest structural characteristics was assessed in Vietnam by collecting forest inventory data. The effect of polarization and seasonality of the SAR data on the estimation of forest biomass was analyzed. The combination of HH, HV, and HH/HV polarizations using multiple linear regression did not improve the estimation of biomass compared to using the HV channel independently, as the HH and HH/HV variables were not statistically significant. The dry season HV backscattering intensity was highly sensitive to the biomass compared to the rainy season backscattering intensity. The SAR data acquired in the rainy season with humid and wet canopies was not very sensitive to the biomass. The strong dependence of the biomass estimates with the season of SAR data acquisition confirmed that the choice of right season SAR data is very important for improving the satellite based estimates of the biomass. The validation results showed that the dry season HV polarization could explain 54% variation of the biomass.
This research was carried out in a dense tropical forest region with the objective of improving the biomass estimates by a combination of ALOS-2 SAR, Landsat 8 optical, and field plots data. Using forest inventory based biomass data, the performance of different parameters from the two sensors was evaluated. The regression analysis with the biomass data showed that the backscatter from forest object (σ • forest ) obtained from the SAR data was more sensitive to the biomass than HV polarization, SAR textures, and maximum NDVI parameters. However, the combination of the maximum NDVI from optical data, SAR textures from HV polarization, and σ • forest improved estimates of the biomass. The best model derived by the combination of multiple parameters from ALOS-2 SAR and Landsat 8 data was validated with inventory data. Then, the best validated model was used to produce an up-to-date biomass map for 2015 in Yok Don National Park, which is an important conservation area in Vietnam. The validation results showed that 74% of the variation of in biomass could be explained by our model.
The saturation of gas trapped in porous rocks by capillarity depends on many factors. Herein, we focused on the effect of gas saturation at flow reversal on capillary trapping saturation. To investigate gas trapping in various sandstone cores, experiments were carried out under supercritical conditions. Residual gas saturation increased with increasing initial gas saturation. The local residual gas saturation fluctuated with heterogeneity due to the sedimentary structure. To evaluate the effect of the initial gas saturation on the residual gas saturation at the pore scale, experiments were also carried out under room temperature. For a fixed capillary injection flow rate, the initial gas saturation depended on the pore size distribution and heterogeneity due to the sedimentary layers. For vertical Berea sandstone cores, the capillary entrance pressure, associated with the layered structure, caused injected gas to enter in the porous layer of the core. However, for horizontal cores, injected gas flowed through a few layers with high permeability. On the other hand, for Kimachi sandstone cores, injected gas only entered the large pores, whereas for Tako sandstone cores, it entered both large and small pores. Therefore, high initial gas saturation can be achieved.
Derivation of more sensitive spectral features from the satellite data is immensely important for better retrieving land cover information and change monitoring, such as changes in snow covered area, forests, and barren lands as some examples from local to the global scale. The major objectives of this paper are to present the potential of water-resistant snow index (WSI) for the detection of snow cover changes in the Himalayas, extant two composite images, biophysical image composite (BIC) and forest cover composite (FCC) for the detection of changes in barren lands and forested areas respectively, and two newly designed composite images, water cover composite (WCC) and urban cover composite (UCC) for the detection of changes in water and urban areas respectively. This research implemented the image compositing technique for the detection and visualization of land cover changes (water, forest, barren, and urban) with respect to local administrative areas where a significant land cover change occurred from 2001 to 2016. A case study was also conducted in the Himalayan region to identify snow cover changes from 2001 to 2015 using the WSI. Analysis of the annual variation of the snow cover in the Himalayas indicated a decreasing trend of the snow cover. Consequently, the downstream areas are more likely to suffer from snow related hazards such as glacial outbursts, avalanches, landslides and floods. The changes in snow cover in the Himalayas may bring significant hydrophysical and livelihood changes in the downstream area including the Mekong Delta. Therefore, the countries sharing the Himalayan region should focus on adapting the severe impacts of snow cover changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.