The nonlinear loads present more in the power systems in the practice today by developing of electronic technology and using the small distributed power sources (solar power, wind power etc.…), this causes the increasing the high frequency switch devices etc. in the power network. Nonlinear loads cause non-sinusoidal currents and voltages with harmonic components, increasing the reactive power, overload of power lines and electrical devices, low power factor and affecting badly to the networks. Shunt active filters (SAF) with current controlled voltage source inverters (CCVSI) are used effectively to reduce the harmonics and to balance the phases sinusoidal source currents by generating the currents to compensate the harmonic currents caused by the nonlinear loads. In this paper we suppose a control strategy to generate the compensation currents of SAF by using the current model predictive engineering. This method is better than the control strategy using PI controller in term of transient time. The desired compensation currents can track exactly the reference compensation currents on the dq frame. The simulation results implemented on the nonlinear load, a full bridge rectifier and 3 phase unbalance load, show that the transient period decrease from 0.1s to 0.02s in comparing with PI controller. The experimental results proof that the THD of source currents decrease from 24.8% to 5.4% when using the proposed method.
The nonlinear loads present more in the power systems in the practice today by developing of electronic technology and using the small distributed power sources (solar power, wind power etc.), this causes the increasing the high frequency switch devices etc. in the power network. Nonlinear loads cause non-sinusoidal currents and voltages with harmonic components, increasing the reactive power, overload of power lines and electrical devices, low power factor and affecting badly to the networks. Shunt active filters (SAF) with current controlled voltage source inverters (CCVSI) are used effectively to reduce the harmonics and to balance the phases sinusoidal source currents by generating the currents to compensate the harmonic currents caused by the nonlinear loads. In this paper we suppose a control strategy to generate the compensation currents of SAF by using the current model predictive engineering. This method is better than the control strategy using PI controller in term of transient time. The desired compensation currents can track exactly the reference compensation currents on the dq frame. The simulation results implemented on the nonlinear load, a full bridge rectifier and 3 phase unbalance load, show that the transient period decrease from 0.1s to 0.02s in comparing with PI controller. The experimental results proof that the THD of source currents decrease from 24.8% to 5.4% when using the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.