This study aims to investigate the influence of shear‐axial force interaction on the seismic performance of a piloti‐type building subjected to the Pohang earthquake. For this purpose, a four‐story piloti‐type building in Pohang, Korea whose columns were brutally damaged by the 2017 Pohang earthquake, one of this country's strongest earthquakes in modern history, was chosen as the object of the study. Columns of this piloti‐type building were designed with insufficient transverse reinforcement, resulting in an increased potential for shear‐axial failure. The piloti‐type building was simulated using Zeus‐NL, an efficient analysis and simulation platform developed for earthquake engineering applications to perform nonlinear time history analysis. A hysteretic shear model in Zeus‐NL capable of accounting for the variation in column axial force was adopted to capture the effect of the shear‐axial force interaction, caused by a combination of horizontal and vertical ground motions. The shear model was validated by comparing the simulated and experimental results. The seismic performance of the piloti‐type building under the effect of the shear‐axial force interaction was compared with that under the shear effect only. Results have indicated that shear effect and shear‐axial force interaction effect significantly reduce column maximum shear force and increase column drift demand. The influence is more intense considering shear‐axial interaction. The seismic response in terms of hysteretic behavior, energy dissipation, and stiffness degradation is presented and discussed.
This study evaluated the influence of additional shear walls, constructed on the first floor, as strengthening methods for a piloti-type building subjected to earthquake loadings. Piloti-type buildings are commonly designed as urban structures in many cities of South Korea. The existence of just columns on the first floor of the building is a feature that is advantageous from an architectural viewpoint, and yet has potential structural disadvantages. Such columns usually exhibit shear–axial failure, due to inherent vertical and horizontal irregularities and insufficient seismic reinforcements. Among several retrofitting methods, including additional braces, carbon fiber reinforced polymers, dampers, and so forth, this research considered reinforced concrete shear walls to improve the seismic responses of piloti buildings. A parametric analysis of the location of the retrofitted shear walls in a typical piloti building was implemented using the Zeus-NL program. Nonlinear time history analysis and incremental dynamic analysis were performed to comparatively evaluate the structure’s seismic responses and fragility curves before and after retrofit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.