This paper presents the sensorless control algorithm for a permanent magnet synchronous motor (PMSM) drive system with the estimator and the intelligent controller. The estimator is constructed on the novel sliding mode observer (SMO) in combination with a phase-locked loop (PLL) to estimate the position and speed of the rotor. The intelligent controller is a radial basis function neural network (RBFNN)-based self-tuning PID (Proportional-Integral-Derivative) controller, applied to the velocity control loop of the PMSM drive control system to adapt strongly to dynamic characteristics during the operation with an external load. The I-f startup strategy is adopted to accelerate the motor from standstill, then switches to the sensorless mode smoothly. The control algorithm program is based on MATLAB and can be executed in simulations and experiments. The control system performance is verified on an experimental platform with various speeds and the dynamic load, in which the specified I-f startup mode and sensorless mode, inspected by tracking response and speed regulation. The simulation and experimental results demonstrate that the proposed method has worked successfully. The motor control system has smooth switching, good tracking response, and robustness against disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.