Organic fertilizers have recently been gaining popularity; however, their governance is not completely assessed in developing countries. This study investigated the nutrient composition of so-called organic fertilizers in Vietnam's markets and issues related to their production, and evaluated their potential to contaminate the groundwater. We analyzed the physicochemical properties of 12 domestic and four imported products of the fertilizers, and conducted a cultivation experiment in sandy soil with the fertilizer applied at a rate of 200 mg N kg −1 soil using an automatic watering apparatus in a greenhouse. We further studied the production of an "organic fertilizer" from coffee by-products. The nutrient content greatly varied among domestic products, whereas they were quite similar among imported products. The product packaging of the collected samples lacked information regarding raw materials. Two thirds of the domestic products contained over 30% of the total N in the inorganic form, implying that the N content dramatically increased in the fertilizers rather than in their supposed raw materials. The stages involved in the production were composting, the addition of extra soil as a bulking agent, and the mixing-in of chemical substances to increase the nutrient content before packing. The remarkably high ratio of inorganic N to total N was attributed to excessive N leaching from soil by the application of domestic fertilizers. These results suggested the need for quality criteria guidelines for organic fertilizers in Vietnam that underline not only nutrient levels, but also the control of raw materials and production process of compost, because they are closely related to nutrient uptake and the leaching loss of nutrients.
The possible roles of PUFAs pathways, such as those mediated by fatty acid synthase, polyketide synthase, and desaturase/elongase, co-exist in S. mangrovei PQ6.
Combining compost with sufficient chemical N fertilizer (CF) in agricultural lands is a popular practice to reduce the amount of inorganic nitrogen and accumulation of non-nutrient constituents in soils. A pot culture experiment was conducted to study the effects of 130 mg N of either solids waste compost (Scomp) or biosolids waste compost (Bcomp) complemented with 130 mg (CF, 1N) and 260 mg•N•pot −1 (CF, 2N) as 15 N labeled (NH4)2SO4 (13.172 atom %) on growth and N uptake by Italian ryegrass. A separate soil incubation without plants was set up by only blends of Scomp and CF. The results from pot culture experiment show that total plant biomass and N uptake from Bcomp were significantly higher than Scomp alone. Scomp combined with CF improved yield and N uptake over those of Scomp alone. For Scomp + 1N treatment, plant nitrogen uptake derived from compost and CF accounted for 29% and 56% of added N from Scomp and CF, respectively. The incubation study indicates that 16.08-29.62 mg•N•kg −1 •soil•day −1 from inorganic-N were immobilized into organic pools, while only 0.40-0.66 mg•N•kg −1 •soil•day −1 from organic-N were mineralized to inorganic pools. Because a part of additional N could be tied up in organic form, combining solids compost with chemical N fertilizer therefore need to consider the effective use of compost-N.
Cyanobacteria are photosynthetic microorganisms that have their biosynthesis capacities for secondary compounds with the high application value. They can produce a variety of bioactive compounds such as lipopeptides, fatty acids, toxins, carotenoids, vitamins and plant growth regulators which could be released into the culture medium. The present study aimed to isolate and screen cyanobacteria strains that could synthesize phytohormone, indole-3-acetic acid (IAA) from paddy soild and fresh water ecosystems (canals, river). Soil and water samples were collected from diferent provinces (Bac Giang, Thanh Hoa and Hue). Indole-3-acetic acid was extracted from the culture of isolated cyanobacteria strains and identified using the Salkowski method. As a result, total 10 strains belonging to 4 genera including Nostoc, Anabena, Geitlerinema and Planktothricoides were susscessful isolated from river, canal and rice field. The morphology of isolated taxa was characterized and monoalgal cultures were grown in BG 11 medium. In L-tryptophan-enriched growth media, all cyanobacteria strains in this research were able to biosynthesize growth regulators with IAA concentrations ranging from 9.1 to 95 µg/mL. Among the isolated cyanobacteria strains, the Planktothricoides raciborskii showed potential for the production of IAA even in the absence of tryptophan in the culture medium. Research results of the L-tryptophan concentration effect on the ability of IAA biosynthesis of this cyanobacteria strain showed that IAA concentration increased gradually and reached the highest value (118,28 ± 2,00 µg/mL) when supplementing L- tryptophan in culture medium at 900 µg/mL. The capacity of producing IAA makes these isolated cyanobacteria an appopriate cadidate for agricultural biotechnology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.