BackgroundGlycoside hydrolases (GH) targeting cellulose, xylan, and chitin are common in the bacterial genomes that have been sequenced. Little is known, however, about the architecture of multi-domain and multi-activity glycoside hydrolases. In these enzymes, combined catalytic domains act synergistically and thus display overall improved catalytic efficiency, making these proteins of high interest for the biofuel technology industry.ResultsHere, we identify the domain organization in 40,946 proteins targeting cellulose, xylan, and chitin derived from 11,953 sequenced bacterial genomes. These bacteria are known to be capable, or to have the potential, to degrade polysaccharides, or are newly identified potential degraders (e.g., Actinospica, Hamadaea, Cystobacter, and Microbispora). Most of the proteins we identified contain a single catalytic domain that is frequently associated with an accessory non-catalytic domain. Regarding multi-domain proteins, we found that many bacterial strains have unique GH protein architectures and that the overall protein organization is not conserved across most genera. We identified 217 multi-activity proteins with at least two GH domains for cellulose, xylan, and chitin. Of these proteins, 211 have GH domains targeting similar or associated substrates (i.e., cellulose and xylan), whereas only six proteins target both cellulose and chitin. Fifty-two percent of multi-activity GHs are hetero-GHs. Finally, GH6, −10, −44 and −48 domains were mostly C-terminal; GH9, −11, −12, and −18 were mostly N-terminal; and GH5 domains were either N- or C-terminal.ConclusionWe identified 40,946 multi-domain/multi-activity proteins targeting cellulase, chitinase, and xylanase in bacterial genomes and proposed new candidate lineages and protein architectures for carbohydrate processing that may play a role in biofuel production.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0538-6) contains supplementary material, which is available to authorized users.
Pseudoalteromonas sp. 520P1 (hereafter referred to as strain 520P1) produces N-acylhomoserine lactones (AHLs), which serve as signaling molecules in Gram-negative bacterial quorum sensing. In a previous genomic analysis of the 5.25-Mb genome of strain 520P1, we detected the presence of at least one homolog of the AHL synthase gene (luxI) and five homologs of the transcriptional regulator protein gene (luxR). The LuxI homolog of strain 520P1 (PalI) contained the conserved amino acid motifs shared by all the LuxI family proteins of the different species examined here. The palI gene expressed in Escherichia coli produced two types of AHLs. In the thin-layer chromatography analysis, these AHLs showed identical mobility to the AHLs produced by strain 520P1. The five LuxR homologs of strain 520P1 (PalR1-PalR5) shared only 17-34% amino acid sequence identity, although higher identities were observed in the C-terminal DNA-binding domain. Among the five PalRs, only PalR5 displayed close homology with LuxR family proteins from other Pseudoalteromonas strains. Notably, the palR3 and palI genes were located close together and only 1021 bases apart in the genome. No cognate luxI homolog associated with the four other palR genes was detected. These characteristics of PalI and the PalRs suggest that AHL autoinducers generated by the PalI enzyme might regulate cellular metabolism in cooperation with five transcriptional regulator PalRs, each of which is presumed to play a distinctive role in bacterial signaling.
the annotation of short-reads metagenomes is an essential process to understand the functional potential of sequenced microbial communities. Annotation techniques based solely on the identification of local matches tend to confound local sequence similarity and overall protein homology and thus don't mirror the complex multidomain architecture and the shuffling of functional domains in many protein families. Here, we present MetaGeneHunt to identify specific protein domains and to normalize the hit-counts based on the domain length. We used MetaGeneHunt to investigate the potential for carbohydrate processing in the mouse gastrointestinal tract. We sampled, sequenced, and analyzed the microbial communities associated with the bolus in the stomach, intestine, cecum, and colon of five captive mice. Focusing on Glycoside Hydrolases (GHs) we found that, across samples, 58.3% of the 4,726,023 short-read sequences matching with a GH domain-containing protein were located outside the domain of interest. next, before comparing the samples, the counts of localized hits matching the domains of interest were normalized to account for the corresponding domain length. Microbial communities in the intestine and cecum displayed characteristic GH profiles matching distinct microbial assemblages. Conversely, the stomach and colon were associated with structurally and functionally more diverse and variable microbial communities. Across samples, despite fluctuations, changes in the functional potential for carbohydrate processing correlated with changes in community composition. Overall MetaGeneHunt is a new way to quickly and precisely identify discrete protein domains in sequenced metagenomes processed with MG-RASt. in addition, using the sister program "GeneHunt" to create custom Reference Annotation Table, MetaGeneHunt provides an unprecedented way to (re)investigate the precise distribution of any protein domain in short-reads metagenomes.
Here, we report a draft 5.25-Mb genome sequence of Pseudoalteromonas sp. 520P1, a marine violacein-producing bacterium isolated from the Pacific coast of Japan. Genome annotation by BLAST searches revealed the presence of one acylhomoserine lactone (AHL) synthase (luxI) and five AHL receptor protein (luxR) gene homologs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.