Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. MethodsWe used data from 1990 to 2019 on people aged 30-79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age.Findings The number of people aged 30-79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306-359) million women and 317 (292-344) million men in 1990 to 626 (584-668) million women and 652 (604-698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55-62) of women and 49% (46-52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43-51) of women and 38% (35-41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20-27) for women and 18% (16-21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including
Summary Background Elevated blood pressure and glucose, serum cholesterol, and body mass index (BMI) are risk factors for cardiovascular diseases (CVDs); some of these factors also increase the risk of chronic kidney disease (CKD) and diabetes. We estimated CVD, CKD, and diabetes mortality attributable to these four cardio-metabolic risk factors for all countries and regions between 1980 and 2010. Methods We used data on risk factor exposure by country, age group, and sex from pooled analysis of population-based health surveys. Relative risks for cause-specific mortality were obtained from pooling of large prospective studies. We calculated the population attributable fractions (PAF) for each risk factor alone, and for the combination of all risk factors, accounting for multi-causality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific PAFs by the number of disease-specific deaths from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all inputs to the final estimates. Findings In 2010, high blood pressure was the leading risk factor for dying from CVDs, CKD, and diabetes in every region, causing over 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths; and cholesterol for 10%. After accounting for multi-causality, 63% (10.8 million deaths; 95% confidence interval 10.1–11.5) of deaths from these diseases were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7.1 million deaths; 6.6–7.6) in 1980. The mortality burden of high BMI and glucose nearly doubled between 1980 and 2010. At the country level, age-standardised death rates attributable to these four risk factors surpassed 925 deaths per 100,000 among men in Belarus, Mongolia, and Kazakhstan, but were below 130 deaths per 100,000 for women and below 200 for men in some high-income countries like Japan, Singapore, South Korea, France, Spain, The Netherlands, Australia, and Canada. Interpretations The salient features of the cardio-metabolic epidemic at the beginning of the twenty-first century are the large role of high blood pressure and an increasing impact of obesity and diabetes. There has been a shift in the mortality burden from high-income to low- and middle-income countries.
Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m 2 . In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, the...
Scand J Public Health 2003; 31(Suppl. 62): 32-37 Aims: Verbal autopsy (VA) has become an important tool in the past 20 years for determining cause of death in communities where there is no routine registration. In many cases, expert physicians have been used to interpret the VA findings and so assign individual causes of death. However, this is time consuming and not always repeatable. Other approaches such as algorithms and neural networks have been developed in some settings. This paper aims to develop a method that is simple, reliable and consistent, which could represent an advance in VA interpretation. Methods: This paper describes the development of a Bayesian probability model for VA interpretation as an attempt to find a better approach. This methodology and a preliminary implementation are described, with an evaluation based on VA material from rural Vietnam. Results: The new model was tested against a series of 189 VA interviews from a rural community in Vietnam. Using this very basic model, over 70% of individual causes of death corresponded with those determined by two physicians, increasing to over 80% if those cases ascribed to old age or as being indeterminate by the physicians were excluded. Discussion: Although there is a clear need to improve the preliminary model and to test more extensively with larger and more varied datasets, these preliminary results suggest that there may be good potential in this probabilistic approach.
Repositioning of the global epicentre of non-optimal cholesterol NCD Risk Factor Collaboration (NCD-RisC)* High blood cholesterol is typically considered a feature of wealthy western countries 1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world 3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health 4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low-and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.