Swine are an important intermediate host for emergence of pandemic influenza. Vietnam is the largest swine producer in South East Asia. Systematic virological and serological surveillance of swine influenza viruses was carried out in Northern Vietnam from May 2013 to June 2014 with monthly sampling of pigs in local and large collective slaughterhouses and in a live pig market. Influenza A seroprevalence in the local slaughterhouses and in the large collective slaughterhouse was 48.7% and 29.1%, respectively. Seventy-seven influenza A viruses were isolated, all from the large collective slaughterhouse. Genetic analysis revealed six virus genotypes including H1N1 2009 pandemic (H1N1pdm09) viruses, H1N2 with H1 of human origin, H3N2 and H1N1pdm09 reassortants, and triple-reassortant H3N2 viruses. Phylogenetic analysis of swine and human H1N1pdm09 viruses showed evidence of repeated spill-over from humans to swine rather than the establishment of H1N1pdm09 as long-term distinct lineage in swine. Surveillance at the large collective slaughterhouse proved to be the most efficient, cost-effective, and sustainable method of surveillance for swine influenza viruses in Vietnam.
Participants with documented prior A(H3N2) virus infection had higher pre-vaccine titres against strains circulating since 2004 compared to those without prior infection. Moreover, they had higher titre rises on days 7, 14, 21 and 280 post-vaccination against vaccine and subsequently circulating strains. Accordingly, 1/72 versus 4/28 of vaccinees with and without documented prior infection experienced illness due to A(H3N2) in the season after vaccination (p = 0.021). The range of A(H3N2) virus clades recognized by vaccine-induced antibodies was associated with the clade that last caused infection, indicating that recalled immunity drove antibody production against shared epitopes. InterpretationThese results suggest that immunological memory from prior infection drives and shapes antibody production induced by inactivated influenza vaccine, and underpins the capacity for vaccine to induce sufficient antibody for protection.
SUMMARYStrongyloidiasis is a neglected tropical disease caused by the roundworm Strongyloides stercoralis affecting 30-100 million people worldwide. Many Southeast-Asian countries report a high prevalence of S. stercoralis infection, but there are little data from Vietnam. Here, we evaluated the seroprevalence of S. stercoralis related to geography, sex and age in Vietnam through serological testing of anonymized sera. Sera (n = 1710, 1340 adults and 270 children) from an anonymized age-stratified serum bank from four regions in Vietnam between 2012 and 2013 were tested using a commercial Strongyloides ratti immunoglobulin G ELISA. Seroreactivity was found in 29·1% (390/1340) of adults and 5·5% (15/270) of children. Male adults were more frequently seroreactive than females (33·3% vs. 24·9%, P = 0·001). The rural central highlands had the highest seroprevalence (42·4% of adults). Seroreactivity in the other regions was 29·9% (Hue) and 26·0% and 18·2% in the large urban centres of Hanoi and Ho Chi Minh City, respectively. We conclude that seroprevalence of S. stercoralis was high in the Vietnamese adult population, especially in rural areas.
Understanding global influenza migration and persistence is crucial for vaccine strain selection. Using 240 new human influenza A virus whole genomes collected in Vietnam during 2001–2008, we looked for persistence patterns and migratory connections between Vietnam and other countries. We found that viruses in Vietnam migrate to and from China, Hong Kong, Taiwan, Cambodia, Japan, South Korea, and the United States. We attempted to reduce geographic bias by generating phylogenies subsampled at the year and country levels. However, migration events in these phylogenies were still driven by the presence or absence of sequence data, indicating that an epidemiologic study design that controls for prevalence is required for robust migration analysis. With whole-genome data, most migration events are not detectable from the phylogeny of the hemagglutinin segment alone, although general migratory relationships between Vietnam and other countries are visible in the hemagglutinin phylogeny. It is possible that virus lineages in Vietnam persisted for >1 year.
Accurate and rapid diagnosis of highly pathogenic avian influenza A H5N1 is of critical importance for the effective clinical management of patients. Here, we developed a rapid and simultaneous detection toolkit for influenza A H5 subtype viruses in human samples based on a bioconjugate of quantum dots (QDs) assembly and a smartphone-based rapid dual fluorescent diagnostic system (SRDFDS).Methods: Two types of QDs were assembled on a latex bead to enhance the detection sensitivity and specificity of influenza A infection (QD580) and H5 subtype (QD650). The dual signals of influenza A and H5 subtype of H5N1-infected patients were detected simultaneously and quantified separately by SRDFDS equipped with two emission filters.Results: Our results showed a high sensitivity of 92.86% (13/14) and 78.57% (11/14), and a specificity of 100% (38/38, P < 0.0001) and 97.37% (37/38) for influenza A and H5 subtype detection, respectively.Conclusion: Therefore, our multiplex QD bioconjugates and SRDFDS-based influenza virus detection toolkit potentially provide accurate and meaningful diagnosis information with improved detection accuracies and sensitivities for H5N1 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.