The so-called Partial Relaxation approach has recently been proposed to solve the Direction-of-Arrival estimation problem. In this paper, we extend the previous work by applying Covariance Fitting with a data model that includes the noise covariance. Instead of applying a single source approximation to multi-source estimation criteria, which is the case for MUSIC, the conventional beamformer, or the Capon beamformer, the Partial Relaxation approach accounts for the existence of multiple sources using a non-parametric modification of the signal model. In the Partial Relaxation framework, the structure of the desired direction is kept, whereas the sensor array manifold corresponding to the remaining signals is relaxed [1], [2]. This procedure allows to compute a closed-form solution for the relaxed signal part and to come up with a simple spectral search with a significantly reduced computational complexity. Unlike in the existing Partial Relaxed Covariance Fitting approach, in this paper we utilize more prior-knowledge on the structure of the covariance matrix by also considering the noise covariance. Simulation results show that, the proposed method outperforms the existing Partial Relaxed Covariance Fitting method, especially in difficult conditions with small sample size and low Signalto-Noise Ratio. Its threshold performance is close to that of Deterministic Maximum Likelihood, but at significantly lower cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.