In Viet Nam, seasonal and A(H5N1) influenza vaccines are not currently available; thus, effective treatment is required. The presence of oseltamivir-resistant viruses is therefore a concern. Active surveillance for oseltamivir resistance among influenza viruses circulating in Viet Nam should be continued.
In the current COVID-19 pandemic, it is critical to understand, as swiftly as possible, how the viral proteins function and how their function might be modulated. The machine learning method Partial Order Optimum Likelihood (POOL) is used to predict binding sites in protein structures from SARS-CoV-2, the virus that causes COVID-19. Using the 3D structure of each protein as input, POOL uses computed electrostatic and chemical properties to predict the amino acids that are biochemically active, including residues in catalytic sites, allosteric sites, and other secondary sites. Docking studies are then performed to predict ligands that bind to each of these predicted sites. For instance, for the x-ray crystal structures of the main protease, POOL predicts two sites: the known catalytic site containing the catalytic dyad His41 and Cys145 and a second nearby site on an adjacent face of the protein surface. The x-ray crystal structure of the SARS-CoV-2 2'-O-ribose RNA methyltransferase (NSP16) protein has been reported in complex with its activating partner NSP10 and with two bound ligands, S-adenosylmethionine (SAM) and b-D-fructopyranose (BDF). POOL predicts three binding sites, including the catalytic SAM-binding site, the BDF binding site on the opposite side, and a third site adjacent to the catalytic / SAM-binding site. Predicted binding ligands (including selected compounds from the ZINC and Enamine databases, Chemical Abstract Service database compounds, and COVID-specific libraries from Enamine and Life Chemicals) are reported for several SARS-CoV-2 proteins. Kinetics assays to test for catalytic activity of the main protease and of 2'-O-ribose RNA methyltransferase in the presence of predicted binding ligands with high scores are underway. Theoretical and experimental methods are aimed at identifying molecules having inhibitory effects on the function of viral proteins. Supported by NSF CHE-2030180.
В работе получены полимеры с молекулярными отпечатками бензоата натрия на поверхности электродов пьезосенсоров. Широкое использование консервантов в пищевой промышленности спо-собствует развитию экспресс-методов их анализа модифицированными пьезосенсорами. Цель работы: анализ морфологии поверхности полимеров с молекулярными отпечатками, полученных на основе полиимида методом сканирующей силовой микроскопии.Полимеры с молекулярными отпечатками получены на основе сополимера диангидрида 1,2,4,5-бензолтетракарбоновой кислоты с 4,4'-диаминодифенилоксидом, производства ОАО МИПП НПО «Пластик», г. Москва. В качестве темплата использовали бензоат натрия. Предполимеризацион-ную смесь наносили на поверхность электродов пьезосенсоров шпателем или методом штампования. Проводили термоимидизацию в сушильном шкафу в два этапа: первый этап проходил при 80oС, вто-рой – при 120oС. После полимеризации пленки, сенсоры охлаждали до комнатной температуры, затем помещали их в дистиллированную воду на 24 часа для удаления шаблона.Исследование морфологии поверхности полученных полимерных пленок проводили с помо-щью сканирующего силового микроскопа (ССМ) «Solver P47 PRO» производства ЗАО «НТ-МДТ» в полуконтактном режиме зондом NSG03 с жесткостью 1.74 Н/м. Обработку изображений проводили программой ФемтоСкан-001.Анализ морфологии поверхности пленок показал, что нанесение предполимеризационной смеси штампом приводит к формированию более равномерной поверхности с перепадом высот от 1.4 до 2.6 нм. Использование шпателя приводит к формированию более шероховатой поверхности с вы-сотами в диапазоне 0.9-3.4 нм. Таким образом предложенная методика нанесения смеси является пер-спективной поскольку позволяет получать более воспроизводимые по толщине и шероховатости по-верхности, что позволит повысить точность анализа веществ пьезосенсорами модифицированными этими полимерами.При этом следует учесть, что при формировании полимерной пленки молекулы-шаблона ча-стично или полностью заглубляются в матрицу полимера, а также располагаются на ее поверхности, образуя глобулярные структуры. Экстракция шаблона с поверхности полимера приводит к появлению полостей комплементарных молекулам бензоата натрия.
The COVID‐19 pandemic, caused by the Severe Acute Respiratory Coronavirus 2 (SARS‐CoV‐2) virus, first started in the Wuhan region of Hubei, China, and has quickly spread to 191 countries and territories, infecting more than 86.4 million people, and resulting in 1.87 global deaths as of January 6th. With SARS‐CoV‐2’s genomic sequence and protein structures deciphered and updated rapidly, clinical treatments and vaccine developments have proceeded simultaneously as researchers attempt to learn more about the infecting mechanisms of this virus. Among these attempts, computational drug screening for SARS‐CoV‐2 has potential for: (1) narrowing down billions of chemical compounds into a list of possible high‐affinity ligands for SARS‐CoV‐2 protein targets, (2) providing information about the activities of SARS‐CoV‐2 proteins, (3) offering possible treatments, and (4) assisting in scientific knowledge to fight against future coronavirus infections. In this work, computational ligand screening for SARS‐CoV‐2 is a combination of site prediction using machine learning technology Partial Order Optimum Likelihood (POOL) and molecular docking. Among the techniques deployed, the machine learning technology POOL was developed by us and assists in the drug screening process for SARS‐CoV‐2 by predicting targeted protein sites, including those that are not the obvious catalytic sites, such as exosites, allosteric sites, and other interaction sites. Results will be presented for the SARS‐CoV‐2 main protease, non‐structural protein 1 (Nsp1), non‐structural protein 9 (Nsp9), and non‐structural protein 15 (Nsp15). Compounds are taken from a variety of libraries, including the ZINC and Enamine databases. Protein structures are downloaded from the Protein Data Bank (http://www.rcsb.org). Molecular dynamic structure simulations are used to generate structures for ensemble docking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.