This paper proposes a novel game-theoretic model for peer-to-peer (P2P) energy trading among the prosumers in a community. The buyers can adjust the energy consumption behavior based on the price and quantity of the energy offered by the sellers. There exist two separate competitions during the trading process: (i) price competition among the sellers and (ii) seller selection competition among the buyers. The price competition among the sellers is modeled as a non-cooperative game. The evolutionary game theory is used to model the dynamics of the buyers for selecting sellers. Moreover, an M-leader and N-follower Stackelberg game approach is used to model the interaction between buyers and sellers. Two iterative algorithms are proposed for the implementation of the games such that an equilibrium state exists in each of the games. The proposed method is applied to a small community microgrid with photo-voltaic (PV) and energy storage systems. Simulation results show the convergence of the algorithms and the effectiveness of the proposed model to handle the P2P energy trading. The results also show that P2P energy trading provides significant financial and technical benefits to the community and it is emerging as an alternative to cost-intensive energy storage systems. Index Terms-Peer-to-peer energy trading, community microgrid, prosumer, game theory, energy storage.
Abstract-Due to the inherent uncertainty involved in renewable energy forecasting, uncertainty quantification is a key input to maintain acceptable levels of reliability and profitability in power system operation. A proposal is formulated and evaluated here for the case of solar power generation, when only power and meteorological measurements are available, without skyimaging and information about cloud passages. Our empirical investigation reveals that the distribution of forecast errors do not follow any of the common parametric densities. This therefore motivates the proposal of a nonparametric approach to generate very short-term predictive densities, i.e., for lead times between a few minutes to one hour ahead, with fast frequency updates. We rely on an Extreme Learning Machine (ELM) as a fast regression model, trained in varied ways to obtain both point and quantile forecasts of solar power generation. Four probabilistic methods are implemented as benchmarks. Rival approaches are evaluated based on a number of test cases for two solar power generation sites in different climatic regions, allowing us to show that our approach results in generation of skilful and reliable probabilistic forecasts in a computationally efficient manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.