Nettle (Urtica dioica L), as a plant rich in biologically active compounds, is one of the most important plants used in herbal medicine. Studies have shown that this plant has antioxidant, antiplatelet, hypoglycemic and hypocholesterolemia effects. In this study, we characterized three Alternaria endophytic fungi isolated from their host U. dioica. We hypothesized that these endophytic fungi can produce new bioactive metabolites, which may possess the bioactive property with potential application in the medical and pharmaceutical industries. The antibacterial activity was evaluated against reference and isolated strains, including Methicillin-Resistant Staphylococcus aureus. A wide range of antimicrobial activities similar to those measured in nettle leaves was detected especially for Alternaria sorghi. Furthermore, the highest antioxidant activity detected with DPPH free radical scavenging was measured for A. sorghi and nettle leaves ethyl acetate extracts. In addition, whereas catalase activity was similar in the three isolated fungi and nettle leaves, total thiol content and superoxide dismutase activity were significantly higher in leaves. A. sorghi showed the best activities compared to other isolated fungi. The characterization and further production of bioactive compounds produced by this endophyte should be investigated to fight bacteria and especially those that develop drug multi-resistance.
Essential oils (EOs) obtained by hydro-distillation from different parts of twigs (EOT), leaves (EOL), and fruits (EOF) of Eucalyptus gunnii Hook. f. were screened for their chemical composition, insecticidal, repellence, and antibacterial properties. Based on GC and GC/MS analysis, 23 constituents were identified across the twigs, leaves, and fruits, with 23, 23, and 21 components, respectively. The primary significant class was oxygenated monoterpenes (82.2–95.5%). The main components were 1,8-cineole (65.6–86.1%), α-terpinyl acetate (2.5–7.6%), o-cymene (3.3–7.5%), and α-terpineol (3.3–3.5%). All three EOs exhibited moderate antibacterial activities. EOL was found to have higher antibacterial activity against all tested strains except Dickeya solani (CFBP 8199), for which EOT showed more potency. Globally, Dickeya solani (CFBP 8199) was the most sensitive (MIC ≤ 2 mg/mL), while the most resistant bacteria were Dickeya dadantii (CFBP 3855) and Pectobacterium carotovorum subsp. carotovorum (CFBP 5387). Fumigant, contact toxicity, and repellent bioassays showed different potential depending on plant extracts, particularly EOT and EOL as moderate repellents and EOT as a medium toxicant.
Many plant species produce phenolic compounds in their various organs and their use in crop protection. These plant secondary metabolites may serve as toxins against the insect pests. The objective of this study was to evaluate in vitro the bio-insecticidal effect of an aqueous extract of wild Olive leaves on Psylla larvae (Euphyllura olivina), a primary pest of the cultivated Olive tree (Olea europaea L. subsp sativa). Two concentrations of 0.05g/ml and 0.1g/ml leaves grinding powder in distilled water were sprayed on branches infested with Psylla larvae. The obtained results revealed a very significant mortality rate of the larvae 24 hours after spraying. The chemical composition of Oleaster leaves aqueous extracts is determined by HPLC-DAD. The results show in majority the presence of phenolic compounds represented by oleuropein and its metabolite hydroxytyrosol. The phenolic compounds of the crude extract were at the origin of this mortality. The Analysis of Variance revealed highly significant results both between the sampled trees and between the tested concentrations. The Principal Component Analysis (PCA) revealed a close relation between the physiological state of the studied trees and the degree of their infestation by the phytophagus. Taking into account, the physical and chemical characteristics of the sampled soils, data analysis showed that trees growing on nitrogen-rich soils were more infested than those growing on soils rich in organic carbon (Corg) and phosphorus (Porg).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.