Th22 cells are a major source of IL-22 and have been found at sites of infection and in a range of inflammatory diseases. However, their molecular characteristics and functional roles remain largely unknown due to our inability to generate and isolate pure populations. We developed a novel Th22 differentiation assay and generated dual IL-22/IL-17A reporter mice to isolate and compare pure populations of cultured Th22 and Th17 cells. Il17a fate-mapping and transcriptional profiling provide evidence that these Th22 cells have never expressed IL-17A, suggesting that they are potentially a distinct cell lineage from Th17 cells under in vitro culture conditions. Interestingly, Th22 cells also expressed granzymes, IL-13 and increased levels of Tbet. Using transcription factor-deficient cells, we demonstrate that RORγt and Tbet act as positive and negative regulators of Th22 differentiation, respectively. Furthermore, under Th1 culture conditions in vitro, as well as in an IFN-γ-rich inflammatory environment in vivo, Th22 cells displayed marked plasticity towards IFN-γ production. Th22 cells also displayed plasticity under Th2 conditions in vitro by up-regulating IL-13 expression. Our work has identified conditions to generate and characterize Th22 cells in vitro. Further, it provides evidence that Th22 cells develop independently of the Th17 lineage, whilst demonstrating plasticity towards both Th1 and Th2 type cells.
Chronic inflammatory diseases of the lung are leading causes of morbidity and mortality worldwide. Many of these disorders can be attributed to abnormal immune responses to environmental stimuli and infections. As such, understanding the innate host defense pathways and their regulatory systems will be critical to developing new approaches to treatment. In this regard, there is increasing interest in the role of microRNAs (miRNAs) in the regulation of pulmonary innate host defense responses and the inflammatory sequelae in respiratory disease. In this review, we discuss recent findings that indicate an important role for miRNAs in the regulation in mouse models of various respiratory diseases and in host defense against bacterial and viral infection. We also discuss the potential utility and limitations of targeting these molecules as anti-inflammatory strategies and also as a means to improve pathogen clearance from the lung.
Pathogenic bacterial infections of the lung are life threatening and underpin chronic lung diseases. Current treatments are often ineffective potentially due to increasing antibiotic resistance and impairment of innate immunity by disease processes and steroid therapy. Manipulation miRNA directly regulating anti-microbial machinery of the innate immune system may boost host defence responses. Here we demonstrate that miR-328 is a key element of the host response to pulmonary infection with non-typeable haemophilus influenzae and pharmacological inhibition in mouse and human macrophages augments phagocytosis, the production of reactive oxygen species, and microbicidal activity. Moreover, inhibition of miR-328 in respiratory models of infection, steroid-induced immunosuppression, and smoke-induced emphysema enhances bacterial clearance. Thus, miRNA pathways can be targeted in the lung to enhance host defence against a clinically relevant microbial infection and offer a potential new anti-microbial approach for the treatment of respiratory diseases.
Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR
Summary
In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4+ T-helper type-2 lymphocytes (TH2 cells), their associated cytokines and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of Type-2 responses and studies that have explored integrated signaling among classical TH2 cytokines (IL-4, IL-5 and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation and airways hyperresponsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of TH2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote TH2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNA are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of TH2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.