Collision-induced dissociation (CID) of sodiated glucose was investigated using electronic structure calculations and resonance excitation in a low-pressure linear ion trap. The major dissociation channels in addition to desodiation are dehydration and CHO elimination reactions which the barrier heights are near to or lower than the sodiation energy of glucose. Dehydration reaction involves the transfer of the H atom from the O2 atom to the O1 atom, followed by the cleavage of the C1-O1 bond. Notably, α-glucose has a dehydration barrier lower than that of β-glucose. This difference results in the larger branching ratio of dehydration reactions involving α-glucose, which provides a simple and fast method for identifying the anomeric configurations of glucose. The CHO elimination starts from the H atom transfer from the O1 atom to the O0 atom, followed by the cleavage of the C1-O0 bond. These results were further confirmed by experimental study using O-isotope-labeled compounds. Both the experimental data and theoretical calculations suggest that the dehydration reaction and cross-ring dissociation of sodiated carbohydrates mainly occur at the reducing end during low-energy CID.
Collision-induced dissociation of sodiated α-glucose, β-glucose, α-galactose, β-galactose, α-mannose, and β-mannose was studied using electronic structure calculations and resonance excitation in a low-pressure linear ion trap. We made an extensive search of conformers and transition states in calculations to ensure the transition state with the lowest barrier height for each dissociation channel could be located. The major dissociation channels, in addition to desodiation, are cross-ring dissociation and dehydration. Cross-ring dissociation starts with H atom transfer from the O1 atom to the O0 atom, followed by the cleavage of the C1-O0 bond. Dehydration of the anomer with O1 and O2 atoms in the cis configuration involves the transfer of an H atom from the O2 atom to the O1 atom, followed by the cleavage of the C1-O1 bond. In contrast, dehydration of the anomer with O1 and O2 atoms in the trans configuration mainly occurs through H atom transfer from the O3 or O2 atom to the O1 atom for glucose, from the O3 or O4 atom to the O1 atom for galactose, and from the O4 or O2 atom to the O1 atom for mannose, followed by the cleavage of the C1-O1 bond. The dehydration barrier heights are lower than those of cross-ring dissociation for cis anomers, but higher than those of cross-ring dissociation for trans anomers. The relative barrier heights from calculations are consistent with the experimental measurements of branching ratios. Both computational and experimental results show that the branching ratio of dehydration can be generalized as a simple rule for rapidly identifying the anomeric configurations of these monosaccharides.
Glycolipids form materials of considerable potential for a wide range of surfactant and thin film applications. Understanding the effect of glycolipid covalent structure on the properties of their thermotropic and lyotropic assemblies is a key step toward rational design of new glycolipid-based materials. Here, we perform molecular dynamics simulations of anhydrous bilayers of dodecyl βmaltoside, dodecyl β-cellobioside, dodecyl β-isomaltoside, and a C 12 C 10 branched β-maltoside. Specifically, we examine the consequences of chain branching and headgroup identity on the structure and dynamics of the lamellar assemblies. Chain branching of the glycolipid leads to measurable differences in the dimensions and interactions of the lamellar assembly, as well as a more fluid-like hydrophobic chain region. Substitution of the maltosyl headgroup of βMal-C 12 by an isomaltosyl moiety leads to a significant decrease in bilayer spacing as well as a markedly altered pattern of inter-headgroup hydrogen bonding. The distinctive simulated structures of the two regioisomers provide insight into the difference of ∼90 °C in their observed clearing temperatures. For all four simulated glycolipid systems, with the exception of the sn-2 chain of the branched maltoside, the alkyl chains are ordered and exhibit a distinct tilt, consistent with recent crystallographic analysis of a branched chain Guerbet glycoside. These insights into structure−property relationships from simulation provide an important molecular basis for future design of synthetic glycolipid materials.
The molecular dynamics of a synthetic branched chain glycolipid, 2-decyl-tetradecyl-β-d-maltoside (C14-10G2), in the dry assemblage of smectic and columnar liquid crystal phases has been studied by dielectric spectroscopy as a function of frequency and temperature during the cooling process. Strong relaxation modes were observed corresponding to the tilted smectic and columnar phases, respectively. At low frequency (∼900 Hz to 1 kHz) in the smectic phase, Process I* was observed due to the tilted sugar bilayer structure. The process continued in the columnar phase (Process I) with an abrupt dynamic change due to phase transition in the frequency range of ∼1.3 kHz to 22 kHz. An additional process (Process II) was observed in the columnar phase with a broader relaxation in the frequency range of ∼10 Hz to 1 kHz. A bias field dependence study was performed in the columnar phase and we found that the relaxation strength rapidly decreased with increased applied dc bias field. This relaxation originates from a collective motion of polar groups within the columns. The results of dielectric spectroscopy were supported by a molecular dynamics simulation study to identify the origin of the relaxation processes, which could be related to the chirality and hydrogen bonds of the sugar lipid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.