BACKGROUND: The pervaporation separation method is considered to be a promising technique for biobutanol recovery from fermentation broths. In this work, activated carbon nanoparticles were embedded in polydimethylsiloxane (PDMS) membranes to improve the pervaporation performance. RESULTS: Adding 6 wt% nano-additives in PDMS membranes increased the flux and separation factor by 42.6% and 51.9%, respectively, compared with neat membranes at 37 ∘ C. Enhanced performance is due to: 1 the presence of additional sorption sites within the membrane with a high affinity for butanol; and 2 the porous structure of the nanofillers generate new pathways for facilitated mass transport through the membrane. The effect of the operating temperature and particle concentration on membrane performance was investigated. Membrane performance improved with an increase in the operating temperature. Higher temperature resulted in increased free volume in the PDMS chains leading to higher diffusion of butanol. Mechanical tensile tests showed that nanocomposite membranes have better mechanical stability in comparison with neat PDMS membranes with the best performance observed at 6 wt% of the nano-additives.
CONCLUSION:The presence of activated carbon nanoparticles in the matrix of PDMS membranes leading to higher flux and separation factor can be beneficial for pervaporation separation of butanol from fermentation broths.
The pervaporation separation of organic compounds from acetone-butanol-ethanol (ABE) fermentation model solutions was studied using activated carbon (AC) nanoparticle-poly (dimethylsiloxane) (PDMS) mixed matrix membranes (MMM). The effects of the operating conditions and nanoparticle loading content on the membrane performance have been investigated. While the separation factor increased continuously, with an increase in the concentration of nanoparticles, the total flux reached a maximum in the MMM with 8 wt % nanoparticle loading in PDMS. Both the separation factor for ABE and the total permeation flux more than doubled for the MMM in comparison to those of neat PDMS membranes prepared in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.