The influence of cooling rate on the microstructure and mechanical properties of two new ultrahigh-strength steels (UHSSs) with different levels of C, Cr and Ni has been evaluated for the as-cooled and untempered condition. One UHSS had higher contents of C and Cr, while the other one had a higher Ni content. On the basis of dilatation curves, microstructures, macrohardness and microhardness, continuous cooling transformation diagrams were constructed as a guide to heat treatment possibilities. Cooling rates (CRs) of 60, 1 and 0.01°C/s were selected for more detailed investigations. Microstructural characterization was made by laser scanning confocal microscopy, field emission scanning electron microscopy combined with electron backscatter diffraction, electron probe microanalysis and X-ray diffraction. Mechanical properties were characterized using macrohardness, tensile and Charpy V-notch impact tests. UHSS with the higher C and Cr contents showed lower transformation temperatures and slower bainite formation kinetics than that with the higher Ni content. Higher cooling rates led to lower volume fractions and carbon contents of retained austenite together with finer prior austenite grain size, as well as effective final grain size and lath size. These changes were accompanied by higher yield and tensile strengths. The best combinations of strength and toughness were obtained with martensitic microstructures and by avoiding the formation of granular bainite accompanied by proeutectoid carbides at low CR. For the cooling rates studied, UHSS with the higher C and Cr contents showed the higher hardness and strength but at the cost of toughness.
This work aims at studying the reactivity of Egyptian manganese ores to be used in the production of ferromanganese alloys in submerged electric arc furnace. Ores with different manganese content (high-medium and low) were selected and characterized by X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). The main mineralogical compositions in the three ores are pyrolusite (MnO 2 ) and hematite (Fe 2 O 3 ). Porosity of selected Mn ores was determined. The reactivity of the different ores was carried out through pre-reduction of the selected ores using thermobalance at 900˚C and 1100˚C and mixture of CO and CO 2 gases. The reduction process was done until steady weight. The reduced ores were examined using XRD and SEM. The results showed that pyrolusite in high and medium ores are converted completely to MnO at 1100˚C. However, the ore with low manganese content was converted to MnO and Mn 3 O 4 . Consequently, it is clear from the results that Mn ores with high and medium MnO 2 content are more reactive than those with low MnO 2 . Therefore, high MnO 2 content Mn ores are preferable to get good economic impact during the production of high carbon ferromanganese.
Increasing demands for ultrahigh-strength steels in commercial as well as military applications have raised interest in finding alternatives to the high-cost high-alloyed steel and super-alloys currently used, e.g. the use of economic low-alloy compositions processed via low-cost air induction melting and electroslag refining (ESR). In this work the yield of alloying elements and the removal of the impurities nitrogen, sulphur and phosphorus as a result of electroslag refining (ESR) in a newly developed CrNiMoWMnV ultrahigh-strength steel (UHSS) have been studied in relation to their activities in the molten metal pool. Six experimental heats of CrNiMoWMnV UHSS with different chemical compositions were designed, melted in an induction furnace (IF) and refined using ESR. This was followed by hot forging of the ingots at 1100˚C to 950˚C. ESR using a CaF 2 -CaO-Al 2 O 3 slag system led to a high yield in Cr, Ni, Mo, W, Mn and V, while the yield of Si is low. The desulphurization of all six UHSS grades was pronounced with most of the sulphur removed either to the slag or by gas reactions. The degree of dephosphorization was only 5% irrespective of the steel composition. On the other hand, denitrification (removal of nitrogen) was achieved. It ranged from 8% to 63% depending on the steel composition. The yield of the alloying elements and removal of impurities from the steel during ESR depends on the chemical and physical properties of the ESR slag and the activity of the elements in the molten state, taking into account elemental interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.