Tsunami‐induced coastal currents are spectacular examples of nonlinear and chaotic phenomena. Due to their long periods, tsunamis transport substantial energy into coastal waters, and as this energy interacts with the ubiquitous irregularity of bathymetry, shear and turbulent features appear. The oscillatory character of a tsunami wave train leads to flow reversals, which in principle can spawn persistent turbulent coherent structures (e.g., large vortices or “whirlpools”) that can dominate damage and transport potential. However, no quantitative measurements exist to provide physical insight into this kind of turbulent variability, and no motion recordings are available to help elucidate how these vortical structures evolve and terminate. We report our measurements of currents in Ventura Harbor, California, generated by the 2015 Chilean M8.3 earthquake. We measured surface velocities using GPS drifters and image sequences of surface tracers deployed at a channel bifurcation, as the event unfolded. From the maps of the flow field, we find that a tsunami with a near‐shore amplitude of 30 cm at 6 m depth produced unexpectedly large currents up to 1.5 m/s, which is a fourfold increase over what simple linear scaling would suggest. Coherent turbulent structures appear throughout the event, across a wide range of scales, often generating the greatest local currents.
Aerial photographs and field studies have revealed a rapid deterioration of salt marshes in Jamaica Bay, New York. Past studies have linked marsh deterioration to sediment supply, water quality, storms, and sea level rise. Yet ship wakes and their potential impacts on marsh edge erosion are not understood. Here, we study ship wake transformation in Jamaica Bay and their potential impacts on salt marsh erosion. We apply short-time, Fourier transform (spectrogram) on existing water level measurements collected during 2015 and 2016. Our analysis reveals the existence of typical wake components. Among the observed wake components is a long wave component which propagates over shallow areas where short wind waves do not reach. We further implement a phase-resolving wave model to study wake transformation in the vicinity of salt marsh islands Little Egg and Big Egg and the consequent morphological changes. The selected marshes are located near a deep shipping channel and a ferry station, making them exposed to wakes of vessels with different size and sailing speed. A series of numerical experiments show that ship wakes can result in erosion spots near the border of deep shipping channels and their banks, i.e., edges of mudflats and marsh substrates. We show that the cumulative erosion increases rapidly with the number of vessels that pass through the study area. For instance, the magnitude of final bed erosion after the passage of 10 vessels is two to three times larger than that after the passage of five vessels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.