Insects experience a wide array of chemical pressures from plant allelochemicals and pesticides and have developed several effective counterstrategies to cope with such toxins. Among these, cytochrome P450 monooxygenases are crucial in plant-insect interactions. Flavin-dependent monooxygenases (FMOs) seem not to play a central role in xenobiotic detoxification in insects, in contrast to mammals. However, the previously identified senecionine N-oxygenase of the arctiid moth Tyria jacobaeae (Lepidoptera) indicates that FMOs have been recruited during the adaptation of this insect to plants that accumulate toxic pyrrolizidine alkaloids. Identification of related FMO-like sequences of various arctiids and other Lepidoptera and their combination with expressed sequence tag (EST) data and sequences emerging from the Bombyx mori genome project show that FMOs in Lepidoptera form a gene family with three members (FMO1 to FMO3). Phylogenetic analyses suggest that FMO3 is only distantly related to lepidopteran FMO1 and FMO2 that originated from a more recent gene duplication event. Within the FMO1 gene cluster, an additional gene duplication early in the arctiid lineage provided the basis for the evolution of the highly specific biochemical, physiological, and behavioral adaptations of these butterflies to pyrrolizidine-alkaloid-producing plants. The genes encoding pyrrolizidine-alkaloid-N-oxygenizing enzymes (PNOs) are transcribed in the fat body and the head of the larvae. An N-terminal signal peptide mediates the transport of the soluble proteins into the hemolymph where PNOs efficiently convert pro-toxic pyrrolizidine alkaloids into their non-toxic N-oxide derivatives. Heterologous expression of a PNO of the generalist arctiid Grammia geneura produced an N-oxygenizing enzyme that shows noticeably expanded substrate specificity compared with the related enzyme of the specialist Tyria jacobaeae. The data about the evolution of FMOs within lepidopteran insects and the functional characterization of a further member of this enzyme family shed light on this almost uncharacterized detoxification system in insects.
Salicyl alcohol oxidase is an extracellular enzyme that occurs in glandular reservoirs of chrysomelid leaf beetle larvae and catalyzes the formation of salicylaldehyde, a volatile deterrent used by the larvae against predators. Salicyl alcohol is the hydrolysis product of salicin, a plant-derived precursor taken up by the beetle larvae from the leaves of willow and poplar trees. The cDNA encoding salicyl alcohol oxidase from two related species Chrysomela tremulae and Chrysomela populi has been identified, cloned, and expressed in an active form in Escherichia coli. The open reading frame of 623 amino acids begins in both enzymes with an N-terminal signal peptide of 21 amino acids. Sequence comparison has revealed that salicyl alcohol oxidase belongs to the family of glucose-methanol-choline oxidoreductase-like sequences with mostly unknown function. Enzymes of this family share similar overall structure with an essentially identical FAD-binding site but possess different catalytic activities. The data suggest that salicyl alcohol oxidase, essential for the activation of the plant-derived precursor salicin, was originally recruited from an oxidase involved in the autogenous biosynthesis of iridoid monoterpenes and found in related chrysomelid leaf beetle species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.