Quantum dots (QDs) are nanocrystals of a semiconductor material that exist in a size regime less than 10 nm. QDs have become promising nanoparticles for a wide variety of different applications. However, the major drawback of QDs is their potential toxicity. This review reports on some recent methods for the synthesis of QDs and explores their properties, structures, applications, and toxicity. QDs are extraordinary because their minute size produces a physically confined electron cloud, an effect known as the quantum confinement. Certainly, because of their special properties as they had a great unique optical, electronic, and chemical properties that were not observe in other materials. These unique properties of the QD are an attractive material for a variety of scientific and commercial applications, most of them recently been realized, such as biosensors, bioimaging, photodetectors, displays, solar cells, wastewater treatment, and quantum computers. Finally, but not the end, an interesting potential QD application in future perspectives will expect as light-emitting diode products, biomedical applications, and Li-Fi.
For the first time, a robust, rugged, and low-cost ion sensor based on potentiometric transduction is presented here for rapid determination of piperidine.
Evaluation of the photocatalytic activities of TiO 2 nanomaterials based on the chemical oxygen demand (COD) analyses under identical experimental conditions was not previously reported. In this work, COD has been selected as an adequate industrial water quality measure toward the establishment of a representative standard test method. The initial COD values of six organic pollutants representing dye, surfactants, phenols and alcohol were set at 30 ± 2 mg/L. Ten of different commercial and synthesized TiO 2 samples representing anatase, rutile and mixed phases were used and characterized. The data of photocatalytic processes were compared to that obtained using the commonly widespread Degussa-P25 TiO 2 (TD). The COD of all pollutants was completely removed by TD at UV exposure dose B9.36 mWh/cm 2 . Consequently, the maximum irradiation dose was set at this value in all experiments. The percentages of COD removal as well as the values of the accumulated UV doses required for complete removal of pollutants were measured using the different TiO 2 samples. TiO 2 samples show different performance abilities toward the various pollutants compared to TD. Based on the obtained data, TiO 2 photocatalysts were divided into two categories according to the hydroxyl radical formation rates. Comparison with previous studies reveals that the photocatalytic efficiency evaluation depends on the method of measurement. COD is recommended to be used as an adequate technique of analysis that meets the purpose of water treatment applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.