The aim of this paper is to achieve a model for prediction of cerebral palsy based on motion data of young infants. The prediction is formulated as a classification problem to assign each of the infants to one of the healthy or with cerebral palsy groups. Unlike formerly proposed features that are mostly defined in the time domain, this study proposes a set of features derived from frequency analysis of infants' motions. Since cerebral palsy affects the variability of the motions, and frequency analysis is an intuitive way of studying variability, suggested features are suitable and consistent with the nature of the condition. In the current application, a well-known problem, few subjects and many features, was initially encountered. In such a case, most classifiers get trapped in a suboptimal model and, consequently, fail to provide sufficient prediction accuracy. To solve this problem, a feature selection method that determines features with significant predictive ability is proposed. The feature selection method decreases the risk of false discovery and, therefore, the prediction model is more likely to be valid and generalizable for future use. A detailed study is performed on the proposed features and the feature selection method: the classification results confirm their applicability. Achieved sensitivity of 86%, specificity of 92% and accuracy of 91% are comparable with state-of-the-art clinical and expert-based methods for predicting cerebral palsy.
Analysing distinct motion patterns that occur during infancy can be a way through early prediction of cerebral palsy. This analysis can only be performed by well-trained expert clinicians, and hence can not be widespread, specially in poor countries. In order to decrease the need for experts, computer-based methods can be applied. If individual motions of different body parts are available, these methods could achieve more accurate results with better clinical insight. Thus far, motion capture systems or the like were needed in order to provide such data. However, these systems not only need laboratory and experts to set up the experiment, but they could be intrusive for the infant's motions. In this paper we build up our prediction method on a solution based on a single video camera, that is far less intrusive and a lot cheaper. First, the motions of different body parts are separated, then, motion features are extracted and used to classify infants to healthy or affected. Our experimental results show that visually obtained motion data allows cerebral palsy detection as accurate as state-of-the-art electromagnetic sensor data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.