Cadmium is known to exert toxic effects on multiple organs, including the testes. To determine if α-Tocopherol, an antioxidant, could protect testicular tissues and spermatogenesis from the toxic effects of cadmium, six-week old male Sprague-Dawley rats were randomized to receive cadmium at doses of 0 (control), 1, 2, 4 or 8 mg/kg by the intraperitoneal route (Group A) or α-tocopherol for 5 days before being challenged with cadmium (Group B) in an identical dose-dependent manner. When both groups received cadmium at 1 mg/kg, there were no changes in testicular histology relative to controls. When Group A received cadmium at 2 mg/kg, undifferentiated spermatids and dead Sertoli cells increased in the seminiferous tubules while interstitial cells decreased and inflammatory cells increased in the interstitial tissues. On flow cytometric analysis, the numbers of elongated spermatids (M1) and round spermatids (M2) decreased while 2c stage cells (M3, diploid) increased. In contrast, when Group B received cadmium at 2 mg/kg, the histological insults were reduced and the distribution of the germ cell population remained comparable to controls. However, α-tocopherol had no protective effects with higher cadmium doses of 4 and 8 mg/kg. These findings indicate that α-tocopherol treatment can protect testicular tissue and preserve spermatogenesis from the detrimental effects of cadmium but its effectiveness is dependent on the dose of cadmium exposed.
The present study established inter-tester and intra-tester reliabilities of ultrasound imaging and diagnostically differentiated muscle imbalances in lateral abdominal muscle sizes between normal adolescents and adolescents with idiopathic scoliosis(AIS). Fifteen adolescents with AIS were age-and gender-matched with 15 normal adolescents. There was no significant difference between bilateral abdominal muscles in normal adolescents, but there was a significant difference between bilateral abdominal muscles in adolescents with AIS (P< 0.05). Overall, inter-tester and intra-tester reliabilities in normal and AIS adolescents ranged from 0.801 -0.984. This novel study shows that using ultrasound imaging to measure lateral abdominal muscle thickness is: (1) highly reliable between and within the testers; and (2) capable of distinguishing between subjects with and without pathological muscle morphology due to AIS.
The aim of this study was to fabricate a reactive oxygen species (ROS)-sensitive and folate-receptor-targeted nanophotosensitizer for the efficient photodynamic therapy (PDT) of cervical carcinoma cells. Chlorin e6 (Ce6) as a model photosensitizer was conjugated with succinyl β-cyclodextrin via selenocystamine linkages. Folic acid (FA)-poly(ethylene glycol) (PEG) (FA-PEG) conjugates were attached to these conjugates and then FA-PEG-succinyl β-cyclodextrin-selenocystamine-Ce6 (FAPEGbCDseseCe6) conjugates were synthesized. Nanophotosensitizers of FaPEGbCDseseCe6 conjugates were fabricated using dialysis membrane. Nanophotosensitizers showed spherical shapes with small particle sizes. They were disintegrated in the presence of hydrogen peroxide (H2O2) and particle size distribution changed from monomodal distribution pattern to multimodal pattern. The fluorescence intensity and Ce6 release rate also increased due to the increase in H2O2 concentration, indicating that the nanophotosensitizers displayed ROS sensitivity. The Ce6 uptake ratio, ROS generation and cell cytotoxicity of the nanophotosensitizers were significantly higher than those of the Ce6 itself against HeLa cells in vitro. Furthermore, the nanophotosensitizers showed folate-receptor-specific delivery capacity and phototoxicity. The intracellular delivery of nanophotosensitizers was inhibited by folate receptor blocking, indicating that they have folate-receptor specificity in vitro and in vivo. Nanophotosensitizers showed higher efficiency in inhibition of tumor growth of HeLa cells in vivo compared to Ce6 alone. These results show that nanophotosensitizers of FaPEGbCDseseCe6 conjugates are promising candidates as PDT of cervical cancer.
Stimulus-sensitive, nanomedicine-based photosensitizer delivery has an opportunity to target tumor tissues since oxidative stress and the expression of molecular proteins, such as CD44 receptors, are elevated in the tumor microenvironment. The aim of this study is to investigate the CD44 receptor- and reactive oxygen species (ROS)-sensitive delivery of nanophotosensitizers of chlorin e6 (Ce6)-conjugated hyaluronic acid (HA) against HeLa human cervical cancer cells. For the synthesis of nanophotosensitizers, thioketal diamine was conjugated with the carboxyl group in HA and then the amine end group of HA-thioketal amine conjugates was conjugated again with Ce6 (Abbreviated as HAthCe6). The HAthCe6 nanophotosensitizers were of small diameter, with sizes less than 200. Their morphology was round-shaped in the observations using a transmission electron microscope (TEM). The HAthCe6 nanophotosensitizers responded to oxidative stress-induced changes in size distribution when H2O2 was added to the nanophotosensitizer aqueous solution, i.e., their monomodal distribution pattern at 0 mM H2O2 was changed to dual- and/or multi-modal distribution patterns at higher concentrations of H2O2. Furthermore, the oxidative stress induced by the H2O2 addition contributed to the disintegration of HAthCe6 nanophotosensitizers in morphology, and this phenomenon accelerated the release rate of Ce6 from nanophotosensitizers. In a cell culture study using HeLa cells, nanophotosensitizers increased Ce6 uptake ratio, ROS generation and PDT efficacy compared to free Ce6. Since HA specifically bonds with the CD44 receptor of cancer cells, the pretreatment of free HA against HeLa cells decreased the Ce6 uptake ratio, ROS generation and PDT efficacy of HAthCe6 nanophotosensitizers. These results indicated that intracellular delivery of HAthCe6 nanophotosensitizers can be controlled by the CD44 receptor-mediated pathway. Furthermore, these phenomena induced CD44 receptor-controllable ROS generation and PDT efficacy by HAthCe6 nanophotosensitizers. During in vivo tumor imaging using HeLa cells, nanophotosensitizer administration showed that the fluorescence intensity of tumor tissues was relatively higher than that of other organs. When free HA was pretreated, the fluorescence intensity of tumor tissue was relatively lower than those of other organs, indicating that HAthCe6 nanophotosensitizers have CD44 receptor sensitivity and that they can be delivered by receptor-specific manner. We suggest that HAthCe6 nanophotosensitizers are promising candidates for PDT in cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.