We present PowerDial, a system for dynamically adapting application behavior to execute successfully in the face of load and power fluctuations. PowerDial transforms static configuration parameters into dynamic knobs that the PowerDial control system can manipulate to dynamically trade off the accuracy of the computation in return for reductions in the computational resources that the application requires to produce its results. These reductions translate directly into performance improvements and power savings.Our experimental results show that PowerDial can enable our benchmark applications to execute responsively in the face of power caps that would otherwise significantly impair responsiveness. They also show that PowerDial can significantly reduce the number of machines required to service intermittent load spikes, enabling reductions in power and capital costs.
We present PowerDial, a system for dynamically adapting application behavior to execute successfully in the face of load and power fluctuations. PowerDial transforms static configuration parameters into dynamic knobs that the PowerDial control system can manipulate to dynamically trade off the accuracy of the computation in return for reductions in the computational resources that the application requires to produce its results. These reductions translate directly into performance improvements and power savings.Our experimental results show that PowerDial can enable our benchmark applications to execute responsively in the face of power caps that would otherwise significantly impair responsiveness. They also show that PowerDial can significantly reduce the number of machines required to service intermittent load spikes, enabling reductions in power and capital costs.
We present several general, broadly applicable mechanisms that enable computations to execute with reduced resources, typically at the cost of some loss in the accuracy of the result they produce. We identify several general computational patterns that interact well with these resource reduction mechanisms, present a concrete manifestation of these patterns in the form of simple model programs, perform simulationbased explorations of the quantitative consequences of applying these mechanisms to our model programs, and relate the model computations (and their interaction with the resource reduction mechanisms) to more complex benchmark applications drawn from a variety of fields.
Power and thermal dissipation constrain multicore performance scaling. Modern processors are built such that they could sustain damaging levels of power dissipation, creating a need for systems that can implement processor power caps. A particular challenge is developing systems that can maximize performance within a power cap, and approaches have been proposed in both software and hardware. Software approaches are flexible, allowing multiple hardware resources to be coordinated for maximum performance, but software is slow, requiring a long time to converge to the power target. In contrast, hardware power capping quickly converges to the the power cap, but only manages voltage and frequency, limiting its potential performance. In this work we propose PUPiL, a hybrid software/hardware power capping system. Unlike previous approaches, PUPiL combines hardware's fast reaction time with software's flexibility. We implement PUPiL on real Linux/x86 platform and compare it to Intel's commercial hardware power capping system for both single and multi-application workloads. We find PUPiL provides the same reaction time as Intel's hardware with significantly higher performance. On average, PUPiL outperforms hardware by from 1:18-2:4 depending on workload and power target. Thus, PUPiL provides a promising way to enforce power caps with greater performance than current state-of-the-art hardware-only approaches.
Power and thermal dissipation constrain multicore performance scaling. Modern processors are built such that they could sustain damaging levels of power dissipation, creating a need for systems that can implement processor power caps. A particular challenge is developing systems that can maximize performance within a power cap, and approaches have been proposed in both software and hardware. Software approaches are flexible, allowing multiple hardware resources to be coordinated for maximum performance, but software is slow, requiring a long time to converge to the power target. In contrast, hardware power capping quickly converges to the the power cap, but only manages voltage and frequency, limiting its potential performance. In this work we propose PUPiL, a hybrid software/hardware power capping system. Unlike previous approaches, PUPiL combines hardware's fast reaction time with software's flexibility. We implement PUPiL on real Linux/x86 platform and compare it to Intel's commercial hardware power capping system for both single and multi-application workloads. We find PUPiL provides the same reaction time as Intel's hardware with significantly higher performance. On average, PUPiL outperforms hardware by from 1:18-2:4 depending on workload and power target. Thus, PUPiL provides a promising way to enforce power caps with greater performance than current state-of-the-art hardware-only approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.