Occurrence of inter-species hybrids in natural populations might be evidence of gene flow between species. In the present study we found evidence of gene flow between two sympatric, genetically related scale insect species – the citrus mealybug Planococcus citri (Risso) and the vine mealybug Planococcus ficus (Signoret). These species can be distinguished by morphological, behavioral, and molecular traits. We employed the sex pheromones of the two respective species to study their different patterns of male attraction. We also used nuclear ITS2 (internal transcribed spacer 2) and mitochondrial COI (Cytochrome c oxidase sub unit 1) DNA sequences to characterize populations of the two species, in order to demonstrate the outcome of a possible gene flow between feral populations of the two species. Our results showed attraction to P. ficus pheromones of all tested populations of P. citri males but not vice versa. Furthermore, ITS2 sequences revealed the presence of ‘hybrid females’ among P. citri populations but not among those of P. ficus. ‘hybrid females’ from P. citri populations identified as P. citri females according to COI sequences. We offer two hypotheses for these results. 1) The occurrence of phenotypic and genotypic traits of P. ficus in P. citri populations may be attributed to both ancient and contemporary gene flow between their populations; and 2) we cannot rule out that an ancient sympatric speciation by which P. ficus emerged from P. citri might have led to the present situation of shared traits between these species. In light of these findings we also discuss the origin of the studied species and the importance of the pherotype phenomenon as a tool with which to study genetic relationships between congener scale insects.
The vine mealybug (VM) females collected in Israel produce two sex pheromone compounds: lavandulyl senecioate (LS) and (S)-lavandulyl isovalerate (LI). The males display ambiguous behavior to LI: repulsion in the vineyard and attraction of laboratory-reared males. We addressed the question of individual male behavior, i.e., do males respond to both LS and LI, or might they display a distinct response to each of the two pheromone compounds. We compared male pherotype frequencies between wild-caught and laboratory-reared populations. Then, we examined the relationship between pherotype composition and male capture rates in pheromone traps. Finally, we addressed the heredity of the pherotypes. The Israeli VM populations contain nine different male pherotypes, as defined according to the male behavior to pheromone compounds. The studied Portuguese populations included five of the nine pherotypes; none of the Portuguese males were attracted to LI. It seems that the high frequency of males that were attracted to LI is related to dense VM populations. It is hypothesized that selection for the male pherotypes, I males, those that respond to LI, occur under high-density rearing conditions. This may result from shorter development times of males and females that produce more I male pherotypes. The lower relative frequency of trapping of males in LI-baited traps than expected from the percentage determined in a Petri dish arena suggests that males that respond solely to LS (S males) are better fliers. The results also suggest that the pherotype trait is inherited by both sexes of the VM.
The response of the late second-instar male nymphs of the mealybug species (Hemiptera, Pseudococcidae), Planococcus citri (Risso), Planococcus ficus (Signoret), Pseudococcus cryptus Hempel Nipaecoccus viridis (Newstead), to their conspecific and heterospecific female pheromone was studied. Males that exhibited the typical appearance of late-second-instar nymphs were tested. The male behavior was monitored soon after their exposure to the tested female sex pheromone in glass Petri dish arenas. Male nymph behavior toward the pheromone source was characterized based on their aggregation on the disks in the arena. Males of all four tested mealybug species were attracted to their conspecific female pheromone. By contrast, almost no interceptions of male nymphs with disks impregnated with a heterospecific female pheromone were observed. The mode of attraction of each of male nymphs of P. ficus, among most of the tested individuals (>80%), to the conspecific female sex pheromone, (S)-lavandulyl senecioate and or (S)-lavandulyl isovalerate, was the same as the mode of attraction latter on as adult. We suggest that by being attracted to the conspecific pheromone these males may direct themselves to a suitable pupation site near conspecific non-sibling mature females, thus preventing inbreeding. The repellency of heterospecific sex pheromone to males that are looking for a pupation site suggests that the latter try to avoid close contact with heterospecific females.Keywords Mealybug . male nymphs . sex pheromone . attraction J Insect Behav (2012) 25:504-513
Mealybugs have a haplodiploid reproduction system, with paternal genome elimination (PGE); the males are diploid soon after fertilization, but during embryogenesis, the male paternal set of chromosomes becomes heterochromatic (HC) and therefore inactive. Previous studies have suggested that paternal genes can be passed on from mealybug males to their sons, but not necessarily by any son, to the next generation. We employed crosses between two mealybug species--Planococcus ficus (Signoret) and Planococcus citri (Risso)--and between two populations of P. ficus, which differ in their mode of pheromone attraction, in order to demonstrate paternal inheritance from males to F2 through F1 male hybrids. Two traits were monitored through three generations: mode of male pheromone attraction (pherotype) and sequences of the internal transcribed spacer 2 (ITS2) gene segment (genotype). Our results demonstrate that paternal inheritance in mealybugs can occur from males to their F2 offspring, through F1 males (paternal line). F2 backcrossed hybrid males expressed paternal pherotypes and ITS2 genotypes although their mother originated through a maternal population. Further results revealed other, hitherto unknown, aspects of inheritance in mealybugs, such as that hybridization between the two species caused absence of paternal traits in F2 hybrid females produced by F1 hybrid females. Furthermore, hybridization between the two species raised the question of whether unattracted males have any role in the interactions between P. ficus and P. citri.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.