fusion by insertion of 21q into 12p has been previously described, 6 we are the first to report the opposite phenomenon, namely insertion of 12p into 21q, producing the same result.
Bromodomain and extraterminal domain (BET) inhibitors are promising epigenetic agents for the treatment of various subsets of acute myeloid leukemia (AML). However, the resistance of leukemia stem cells (LSC) to BET inhibitors remains a major challenge. In this study, we evaluated the mechanisms underlying LSC resistance to the BET inhibitor JQ1. We evaluated the levels of apoptosis and autophagy induced by JQ1 in LSC-like leukemia cell lines and primary CD34CD38 leukemic blasts obtained from AML cases with normal karyotype without recurrent mutations. JQ1 effectively induced apoptosis in a concentration-dependent manner in JQ1-sensitive AML cells. However, in JQ1-resistant AML LSCs, JQ1 induced little apoptosis and led to upregulation of beclin-1, increased LC3-II lipidation, formation of autophagosomes, and downregulation of p62/SQSTM1. Inhibition of autophagy by pharmacologic inhibitors or knockdown of beclin-1 using specific siRNA enhanced JQ1-induced apoptosis in resistant cells, indicating that prosurvival autophagy occurred in these cells. Independent of mTOR signaling, activation of the AMPK (pThr172)/ULK1 (pSer555) pathway was found to be associated with JQ1-induced autophagy in resistant cells. AMPK inhibition using the pharmacologic inhibitor compound C or by knockdown of AMPKα suppressed autophagy and promoted JQ1-induced apoptosis in AML LSCs. These findings revealed that prosurvival autophagy was one of the mechanisms involved in the resistance AML LSCs to JQ1. Targeting the AMPK/ULK1 pathway or inhibition of autophagy could be an effective therapeutic strategy for combating resistance to BET inhibitors in AML and other types of cancer. .
Bromodomain and extraterminal domain (BET) inhibitors are promising epigenetic agents for the treatment of various subsets of acute myeloid leukemia (AML). However, the resistance of leukemia stem cells (LSCs) to BET inhibitors remains a major challenge. In this study, we evaluated the mechanisms underlying LSC resistance to the BET inhibitor JQ1. We evaluated the levels of apoptosis and macroautophagy/autophagy induced by JQ1 in LSC-like leukemia cell lines and primary CD34 C CD38 ¡ leukemic blasts obtained from AML cases with normal karyotype without recurrent mutations. JQ1 effectively induced apoptosis in a concentration-dependent manner in JQ1-sensitive AML cells. However, in JQ1-resistant AML LSCs, JQ1 induced little apoptosis and led to upregulation of BECN1/Beclin 1, increased LC3 lipidation, formation of autophagosomes, and downregulation of SQSTM1/p62. Inhibition of autophagy by pharmacological inhibitors or knockdown of BECN1 using specific siRNA enhanced JQ1-induced apoptosis in resistant cells, indicating that prosurvival autophagy occurred in these cells. Independent of MTOR signaling, activation of the AMPK (p-Thr172)-ULK1 (p-Ser555) pathway was found to be associated with JQ1-induced autophagy in resistant cells. AMPK inhibition using the pharmacological inhibitor compound C or by knockdown of PRKAA/AMPKa suppressed autophagy and promoted JQ1-induced apoptosis in AML LSCs. These findings revealed that prosurvival autophagy was one of the mechanisms involved in the resistance of AML LSCs to JQ1. Targeting the AMPK-ULK1 pathway or inhibition of autophagy could be an effective therapeutic strategy for combating resistance to BET inhibitors in AML and other types of cancer.KEYWORDS AMPK-ULK1; autophagy; BET inhibitor; leukemia stem cells; resistanceDespite advances in our understanding of the molecular pathogenesis of acute myeloid leukemia (AML), the prognosis remains poor, primarily because of high relapse rates. Cytotoxic therapy has shown limited effectiveness in eradicating the functionally distinct leukemia stem cells (LSCs), which may contribute to chemotherapy resistance and relapse. Therefore, novel treatment strategies with acceptable toxicity that target LSCs are urgently needed to improve therapeutic outcomes for patients with AML. BRD4 (bromodomain containing 4), a member of the bromodomain and extraterminal domain (BET) family, is a chromatin reader that preferentially localizes to "super-enhancer" regions upstream of a variety of oncogenes, including MYC/cMyc, to regulate their expression. BRD4 inhibition may be an effective alternative strategy for targeting MYC, which is considered undruggable and deregulated in many human cancers. Selective inhibitors of BET, such as JQ1, are promising epigenetic agents for the treatment of various tumor types, including AML and LSCs.Although leukemia cells appear to have differences in apoptotic responses to JQ1 and this cannot be explained by changes in the levels of MYC and BRD4, our knowledge of the molecular mechanisms underlying resist...
Identification of biomarkers that predict responses to hypomethylating agents (HMAs) will allow optimal strategies for epigenetic therapy in myelodysplastic syndromes (MDS) to be established. Serum miR-21 was quantitatively measured in 58 MDS patients treated with HMAs and 14 healthy controls. Serum miR-192 was an internal control, and diagnostic performance was evaluated according to receiver operating characteristics (ROCs). ROC analysis indicated that serum miR-21 levels differentiated responders from non-responders with an area under the curve of 0.648 (95% confidence, 0.49 to 0.72). The baseline level of serum miR-21 was significantly lower in the responder group than in the non-responder group (P = 0.041). The overall response rate (ORR) of the high miR-21 group was significantly lower than that of the low miR-21 group (41.2 vs. 73.2%, P = 0.021). Progression-free survival (PFS) was significantly inferior in the high group versus the low group (14.0 vs. 44.5 months, P = 0.001). Multivariate analyses revealed that the initial serum miR-21 level (P = 0.001) and circulating blasts (P = 0.007) were prognostic factors for PFS. Serum miR-21 level was significantly associated with ORR and PFS in MDS patients treated with HMAs. Although validation with a large prospective study is required, serum miR-21 is a potential biomarker of epigenetic therapy in MDS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.