Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Endothelial cell (EC) dysfunction is a key CKD-specific risk factor; however, the mechanisms by which uremia harms the endothelium are still unclear. We report a role for excessive neutrophil extracellular trap (NET) formation induced by uremic serum on EC injury. Level of plasma nucleosome and myeloperoxidase-DNA, established in vivo markers of NETs, as well as intracellular adhesion molecule (ICAM)-1 were measured in hemodialysis (HD) patients and healthy volunteers (HV) and their prognostic role evaluated. For in vitro studies, HV-derived neutrophils and differentiated HL-60 cells by retinoic acid were used to determine the effect of uremic serum-induced NETs on human umbilical vein EC (HUVEC). The level of in vivo NETs was significantly higher in incident HD patients compared to HV, and these markers were strongly associated with ICAM-1. Specifically, nucleosome and ICAM-1 levels were independent predictors of a composite endpoint, all-cause mortality, or vascular access failure. In vitro, HD-derived uremic serum significantly increased NET formation both in dHL-60 and isolated neutrophils compared to control serum, and these NETs decreased EC viability and induced their apoptosis. In addition, the level of ICAM-1, E-selectin and von Willebrand factor in HUVEC supernatant was significantly increased by uremic serum-induced NETs compared to control serum-induced NETs. Dysregulated neutrophil activities in the uremic milieu may play a key role in vascular inflammatory responses. The high mortality and CVD rates in ESRD may be explained in part by excessive NET formation leading to EC damage and dysfunction.
Background: Anti-heparin/platelet factor 4 (PF4) antibodies may trigger severe thrombotic complications in hemodialysis (HD) patients. Tetrameric PF4 has a high affinity for extracellular DNA, which is a key component of neutrophil extracellular traps (NETs); therefore, the interactions between anti-heparin/PF4 antibodies and NETs can contribute to prothrombotic events. Methods: Anti-heparin/PF4 antibody levels were measured by enzyme-linked immunosorbent assay and an optical density > 1.8 was regarded as clinically significant. We additionally measured serum nucleosome levels as representative markers of NETs, and the contributions of anti-heparin/PF4 and increased serum nucleosome levels to the primary functional patency loss of vascular access was assessed. Results: The frequency of anti-heparin/PF4 antibodies was significantly higher in incident HD patients compared to prevalent HD patients (23.6% vs. 7.7%). Serum nucleosome levels, as well as the white blood cell counts, neutrophil counts, and high-sensitivity C-reactive protein levels, were significantly higher in anti-heparin/PF4 antibody-positive patients compared to the control. Platelet counts tended to be lower in the patients with anti-heparin/PF4 of >1.8 than in the controls. Relative risk calculations showed that the presence of anti-heparin/PF4 antibodies increased the risk of primary functional patency failure by 4.28-fold, and this risk increased further with higher nucleosome levels. Furthermore, in the anti-heparin/PF4 antibody-positive group, the time to first vascular intervention was much shorter, and the risk of repeated intervention was higher, compared to the controls. Conclusion:In incident HD patients, the presence of anti-heparin/PF4 antibodies was associated with increased NET formation; this could be a strong predictor of vascular access complications
Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Endothelial cell (EC) dysfunction is a key CKD-specific risk factor; however, the mechanisms by which uremia harms the endothelium are still unclear. We report a role for excessive neutrophil extracellular trap (NET) formation induced by uremic serum on EC injury. Level of plasma nucleosome and myeloperoxidase-DNA, established in vivo markers of NETs, as well as intracellular adhesion molecule (ICAM)-1 were measured in hemodialysis (HD) patients and healthy volunteers (HV) and their prognostic role evaluated. For in vitro studies, we differentiated HL-60 cells into neutrophil-like cells (dHL-60) by applying retinoic acid and determined the effect of uremic serum on these dHL-60 and human umbilical vein EC (HUVEC). The level of in vivo NETs was significantly higher in incident HD patients compared to HV, and these markers were strongly associated with ICAM-1. Specifically, nucleosome and ICAM-1 levels were independent predictors of a composite endpoint, all-cause mortality or vascular access failure. In vitro, HD-derived serum significantly increased NET formation by dHL-60, and these NETs decreased EC viability and induced their apoptosis. In addition, the ICAM-1 level in HUVEC supernatant was significantly increased by uremic serum-induced NETs compared to control serum-induced NETs. Dysregulated neutrophil activities in the uremic milieu may play a key role in vascular inflammatory responses. The high mortality and CVD rates in ESRD may be explained in part by excessive NET formation leading to EC damage and dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.