The excess free energy of a molecular cluster is a key quantity in models of the nucleation of droplets from a metastable vapour phase; it is often viewed as the free energy arising from the presence of an interface between the two phases. We show how this quantity can be extracted from simulations of the mechanical disassembly of a cluster using guide particles in molecular dynamics. We disassemble clusters ranging in size from 5 to 27 argon-like Lennard-Jones atoms, thermalised at 60 K, and obtain excess free energies, by means of the Jarzynski equality, that are consistent with previous studies. We only simulate the cluster of interest, in contrast to approaches that require a series of comparisons to be made between clusters differing in size by one molecule. We discuss the advantages and disadvantages of the scheme and how it might be applied to more complex systems.
We develop a kinetic theory of cluster decay by considering the stochastic motion of molecules within an effective potential of mean force (PMF) due to the cluster. We perform molecular dynamics simulations on a 50-atom argon cluster to determine the mean radial force on a component atom and hence the confining potential of mean force. Comparisons between isolated clusters and clusters thermostatted through the presence of a 100-atom helium carrier gas show that the heat bath has only a slight effect upon the PMF. This confirms the validity of calculations of cluster properties using isolated cluster simulations. The PMF is used to calculate the atomic evaporation rate from these clusters, and results are compared with the predictions of the capillarity approximation together with detailed balance, both components of the classical theory of aerosol nucleation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.