This paper studies the problem of supporting question answering in a new language with limited training resources. As an extreme scenario, when no such resource exists, one can (1) transfer labels from another language, and (2) generate labels from unlabeled data, using translator and automatic labeling function respectively. However, these approaches inevitably introduce noises to the training data, due to translation or generation errors, which require a judicious use of data with varying confidence. To address this challenge, we propose a weakly-supervised framework that quantifies such noises from automatically generated labels, to deemphasize or fix noisy data in training. On reading comprehension task, we demonstrate the effectiveness of our model on low-resource languages with varying similarity to English, namely, Korean and French.
Despite the super-human accuracy of recent deep models in NLP tasks, their robustness is reportedly limited due to their reliance on spurious patterns. We thus aim to leverage contrastive learning and counterfactual augmentation for robustness. For augmentation, existing work either requires humans to add counterfactuals to the dataset or machines to automatically matches near-counterfactuals already in the dataset. Unlike existing augmentation is affected by spurious correlations, ours, by synthesizing “a set” of counterfactuals, and making a collective decision on the distribution of predictions on this set, can robustly supervise the causality of each term. Our empirical results show that our approach, by collective decisions, is less sensitive to task model bias of attribution-based synthesis, and thus achieves significant improvements, in diverse dimensions: 1) counterfactual robustness, 2) cross-domain generalization, and 3) generalization from scarce data.
This paper studies the problem of non-factoid question answering, where the answer may span over multiple sentences. Existing solutions can be categorized into representationand interaction-focused approaches. We combine their complementary strength, by a hybrid approach allowing multi-granular interactions, but represented at word level, enabling an easy integration with strong word-level signals. Specifically, we propose MICRON: Multigranular Interaction for Contextualizing RepresentatiON, a novel approach which derives contextualized uni-gram representation from n-grams. Our contributions are as follows: First, we enable multi-granular matches between question and answer n-grams. Second, by contextualizing word representation with surrounding n-grams, MICRON can naturally utilize word-based signals for query term weighting, known to be effective in information retrieval. We validate MICRON in two public non-factoid question answering datasets: WikiPassageQA and InsuranceQA, showing our model achieves the state of the art among baselines with reported performances on both datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.