On the basis of recent research, brain-inspired parallel computing is considered as one of the most promising technologies for efficiently handling large amounts of informational data. In general, this type of parallel computing is called neuromorphic computing; it operates on the basis of hardware-neural-network (HW-NN) platforms consisting of numerous artificial synapses and neurons. Extensive research has been conducted to implement artificial synapses with characteristics required to ensure high-level performance of HW-NNs in terms of device density, energy efficiency, and learnings accuracy. Recently, artificial synapsesspecifically, diode- and transistor-type synapsesbased on various two-dimensional (2D) van der Waals (vdW) materials have been developed. Unique properties of such 2D vdW materials allow for notable improvements in synaptic performances in terms of learning capability, scalability, and power efficiency, thereby highlighting the feasibility of the 2D vdW synapses in improving the performance of HW-NNs. In this review, we introduce the desirable characteristics of artificial synapses required to ensure high-level performance of neural networks. Recent progress in research on artificial synapses, fabricated particularly using 2D vdW materials and heterostructures, is comprehensively discussed with respect to the weight-update mechanism, synaptic characteristics, power efficiency, and scalability.
We tested the effect of effortful swallow combined with surface electrical stimulation used as a form of resistance training in post-stroke patients with dysphagia. Twenty post-stroke dysphagic patients were randomly divided into two groups: those who underwent effortful swallow with infrahyoid motor electrical stimulation (experimental group, n = 10) and effortful swallow with infrahyoid sensory electrical stimulation (control group, n = 10). In the experimental group, electrical stimulation was applied to the skin above the infrahyoid muscle with the current was adjusted until muscle contraction occurred and the hyoid bone was depressed. In the control group, the stimulation intensity was applied just above the sensory threshold. The patients in both groups were then asked to swallow effortfully in order to elevate their hyolaryngeal complex when the stimulation began. A total of 12 sessions of 20 min of training for 4 weeks were performed. Blinded biomechanical measurements of the extent of hyolaryngeal excursion, the maximal width of the upper esophageal sphincter (UES) opening, and the penetration-aspiration scale before and after training were performed. In the experimental group, the maximal vertical displacement of the larynx was increased significantly after the intervention (p < 0.05). The maximal vertical displacement of the hyoid bone and the maximal width of the UES opening increased but the increase was not found to be significant (p = 0.066). There was no increase in the control group. Effortful swallow training combined with electrical stimulation increased the extent of laryngeal excursion. This intervention can be used as a new treatment method in post-stroke patients with dysphagia.
Muscle hypertrophy induced by resistance training is accompanied by an increase in the number of myonuclei. The acquired myonuclei are viewed as a cellular component of muscle memory by which muscle enlargement is promoted during a re-training period. In the present study, we investigated the effect of exercise preconditioning on mitochondrial remodelling induced by resistance training. Sprague-Dawley rats were divided into four groups: untrained control, training, pre-training or re-training. The training groups were subjected to weight loaded-ladder climbing exercise training. Myonuclear numbers were significantly greater (up to 20%) in all trained muscles compared to untrained controls. Muscle mass was significantly higher in the re-training group compared to the training group (∼2-fold increase). Mitochondrial content, mitochondrial biogenesis gene expression levels and mitochondrial DNA copy numbers were significantly higher in re-trained muscles compared to the others. Oxidative myofibres (type I) were significantly increased only in the re-trained muscles. Furthermore, in vitro studies using insulin-like growth factor-1-treated L6 rat myotubes demonstrated that myotubes with a higher myonuclear number confer greater expression levels of both mitochondrial and nuclear genes encoding for constitutive and regulatory mitochondrial proteins, which also showed a greater mitochondrial respiratory function. These data suggest that myonuclei acquired from previous training facilitate mitochondrial biogenesis in response to subsequent retraining by (at least in part) enhancing cross-talk between mitochondria and myonuclei in the pre-conditioned myofibres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.