Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by selective loss of dopaminergic neurons and the presence of Lewy bodies. Alpha-synuclein is a major component of Lewy bodies in sporadic PD, and mutations in alpha-synuclein cause autosomal-dominant hereditary PD. Here, we generated A53T mutant alpha-synuclein-inducible PC12 cell lines using the Tet-off regulatory system. Inducing expression of A53T alpha-synuclein in differentiated PC12 cells decreased proteasome activity, increased the intracellular ROS level and caused up to approximately 40% cell death, which was accompanied by mitochondrial cytochrome C release and elevation of caspase-9 and -3 activities. Cell death was partially blocked by cyclosporine A [an inhibitor of the mitochondrial permeability transition (MPT) process], z-VAD (a pan-caspase inhibitor) and inhibitors of caspase-9 and -3 but not by a caspase-8 inhibitor. Furthermore, induction of A53T alpha-synuclein increased endoplasmic reticulum (ER) stress and elevated caspase-12 activity. RNA interference to knock down caspase-12 levels or salubrinal (an ER stress inhibitor) partially protected against cell death and further reduced A53T toxicity after treatment with z-VAD. Our results indicate that both ER stress and mitochondrial dysfunction contribute to A53T alpha-synuclein-induced cell death. This study sheds light into the pathogenesis of alpha-synuclein cellular toxicity in PD and provides a cell model for screening PD therapeutic agents.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the abnormal expansion of a polyglutamine tract in the huntingtin protein. We have developed PC12 cell lines in which the expression of an N-terminal truncation of huntingtin (N63) with either wild type (23Q) or expanded polyglutamine (148Q) can be induced by the removal of doxycycline. Differentiated PC12 cells induced to express N63-148Q showed cellular toxicity reaching up to 50% at 6 days post-induction. Histone acetyltransferase (HAT) activity and global histone acetylation was significantly decreased in cells expressing truncated huntingtin with mutant but not normal huntingtin. These data suggest that altered chromatin modification via reduction in coactivator activity may cause neuronal transcriptional dysregulation and contribute to cellular toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.