A dropstone-bearing, Middle Permian to Early Triassic peri-glacial sedimentary unit was first discovered from the Khangai-Khentei Belt in Mongolia, Central Asian Orogenic Belt. The unit, Urmegtei Formation, is assumed to cover the early Carboniferous Khangai-Khentei accretionary complex, and is an upward-fining sequence, consisting of conglomerates, sandstones, and varved sandstone and mudstone beds with granite dropstones in ascending order. The formation was cut by a felsic dike, and was deformed and metamorphosed together with the felsic dike. An undeformed porphyritic granite batholith finally cut all the deformed and metamorphosed rocks. LA-ICP-MS, U-Pb zircon dating has revealed the following 206 Pb/ 238
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian-bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian-bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well-preserved radiolarian fossils. Zircon grains showing a U-Pb laser ablation-inductively coupled plasma-mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus-Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U-Pb sensitive high mass-resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus-Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji-Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.
In the studied oil field offshore Abu Dhabi, horizontal wells in the upper part of the Cenomanian "E" Formation composed of shallow-marine carbonates often encounter unexpected rocks characterized by high GR values. They have been referred to as "High-GR section (HGRS)" and thought to cause borehole instability. This paper aims to unravel the geological factors that caused the borehole instability. Coaly shale observed in cores had long been believed to be the problematic HGRS. Therefore, we conducted litho-, chemo- and biostratigraphic analyses and well log evaluation on the coaly shale and the surrounding deposits. The obtained results indicate that the coaly shale occurs as thin stratiform layers which were formed under a salt to brackish marsh environment during the deposition of the uppermost part of the "E" Formation. Although the Cenomanian/Turonian transition is the period of the Cretaceous thermal maximum when the global sea level was very high, the "E" Formation was largely exposed in the Turonian due to a regional tectonic uplift caused by the Oman ophiolite obduction onto the southeastern Arabian Plate. Coal deposition and the subsequent significant karstification in the studied field were caused by a greenhouse-induced warm and humid climate. GR log responses of the HGRS in the horizontal wells are classified into two types. One is a spiky shift that often reaches very-high GR values (>100 gAPI), and the other is a much broader shift with a flat plateau with moderately-high GR values (60–80 gAPI). The latter is always found in the wells with the borehole instability. Calibration of GR logs to the core data in the same vertical/deviated wells suggests that the intervals with very-high GR values (>100 gAPI) observed in the horizontal wells correspond to the coaly shale of the "E" Formation. Whereas, the intervals with moderately-high GR values (60–80 gAPI), which are too low for the coaly shale, are equivalent to marine shale of the overlying "B" Formation. Karstic features including chaotic cave breccia are often observed in the upper part of the "E" Formation, which suggests that caves were likely formed during the episodic subaerial exposures. Subsequently, cave collapse likely occurred during and/or after the deposition of the "B" Formation, and it could pull down the overlying "B" Formation to the reservoir level of the "E" Formation, accompanying the coaly shale. We consider that the borehole instability was primarily induced by penetrating the structurally-depressed "B" Formation, rather than the coaly shale. This new concept is based on a comprehensive understanding of the causal link between the paleoenvironmental dynamics and the borehole instability in the studied field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.