Comorbid conditions appear to be common among individuals hospitalised with coronavirus disease 2019 (COVID-19) but estimates of prevalence vary and little is known about the prior medication use of patients. Here, we describe the characteristics of adults hospitalised with COVID-19 and compare them with influenza patients. We include 34,128 (US: 8362, South Korea: 7341, Spain: 18,425) COVID-19 patients, summarising between 4811 and 11,643 unique aggregate characteristics. COVID-19 patients have been majority male in the US and Spain, but predominantly female in South Korea. Age profiles vary across data sources. Compared to 84,585 individuals hospitalised with influenza in 2014-19, COVID-19 patients have more typically been male, younger, and with fewer comorbidities and lower medication use. While protecting groups vulnerable to influenza is likely a useful starting point in the response to COVID-19, strategies will likely need to be broadened to reflect the particular characteristics of individuals being hospitalised with COVID-19.
Purpose
Digital Imaging and Communications in Medicine (DICOM), a standard file format for medical imaging data, contains metadata describing each file. However, metadata are often incomplete, and there is no standardized format for recording metadata, leading to inefficiency during the metadata-based data retrieval process. Here, we propose a novel standardization method for DICOM metadata termed the Radiology Common Data Model (R-CDM).
Materials and Methods
R-CDM was designed to be compatible with Health Level Seven International (HL7)/Fast Healthcare Interoperability Resources (FHIR) and linked with the Observational Medical Outcomes Partnership (OMOP)-CDM to achieve a seamless link between clinical data and medical imaging data. The terminology system was standardized using the RadLex playbook, a comprehensive lexicon of radiology. As a proof of concept, the R-CDM conversion process was conducted with 41.7 TB of data from the Ajou University Hospital. The R-CDM database visualizer was developed to visualize the main characteristics of the R-CDM database.
Results
Information from 2801360 cases and 87203226 DICOM files was organized into two tables constituting the R-CDM. Information on imaging device and image resolution was recorded with more than 99.9% accuracy. Furthermore, OMOP-CDM and R-CDM were linked to efficiently extract specific types of images from specific patient cohorts.
Conclusion
R-CDM standardizes the structure and terminology for recording medical imaging data to eliminate incomplete and unstandardized information. Successful standardization was achieved by the extract, transform, and load process and image classifier. We hope that the R-CDM will contribute to deep learning research in the medical imaging field by enabling the securement of large-scale medical imaging data from multinational institutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.