Directed differentiation of human pluripotent stem cells into functional insulin-producing beta-like cells holds great promise for cell replacement therapy for patients suffering from diabetes. This approach also offers the unique opportunity to study otherwise inaccessible aspects of human beta cell development and function in vitro. Here, we show that current pancreatic progenitor differentiation protocols promote precocious endocrine commitment, ultimately resulting in the generation of non-functional polyhormonal cells. Omission of commonly used BMP inhibitors during pancreatic specification prevents precocious endocrine formation while treatment with retinoic acid followed by combined EGF/KGF efficiently generates both PDX1 + and subsequent PDX1 + /NKX6.1 + pancreatic progenitor populations, respectively. Precise temporal activation of endocrine differentiation in PDX1 + /NKX6.1 + progenitors produces glucose-responsive beta-like cells in vitro that exhibit key features of bona fide human beta cells, remain functional after short-term transplantation, and reduce blood glucose levels in diabetic mice. Thus, our simplified and scalable system accurately recapitulates key steps of human pancreas development and provides a fast and reproducible supply of functional human beta-like cells.
Despite advances in the differentiation of insulin-producing cells from human embryonic stem cells, the generation of mature functional β cells in vitro has remained elusive. To accomplish this goal, we have developed cell culture conditions to closely mimic events occurring during pancreatic islet organogenesis and β cell maturation. In particular, we have focused on recapitulating endocrine cell clustering by isolating and reaggregating immature β-like cells to form islet-sized enriched β-clusters (eBCs). eBCs display physiological properties analogous to primary human β cells, including robust dynamic insulin secretion, increased calcium signalling in response to secretagogues, and improved mitochondrial energization. Notably, endocrine cell *
Human induced pluripotent stem cells (HiPSCs) appear to be highly similar to human embryonic stem cells (HESCs). Using two genetic lineage-tracing systems, we demonstrate the generation of iPSC lines from human pancreatic islet beta cells. These reprogrammed cells acquired markers of pluripotent cells and differentiated into the three embryonic germ layers. However, the beta cell-derived iPSCs (BiPSCs) maintained open chromatin structure at key beta-cell genes, together with a unique DNA methylation signature that distinguishes them from other PSCs. BiPSCs also demonstrated an increased ability to differentiate into insulin-producing cells both in vitro and in vivo, compared with ESCs and isogenic non-beta iPSCs. Our results suggest that the epigenetic memory may predispose BiPSCs to differentiate more readily into insulin producing cells. These findings demonstrate that HiPSC phenotype may be influenced by their cells of origin, and suggest that their skewed differentiation potential may be advantageous for cell replacement therapy.
Human pancreatic islets of Langerhans contain five distinct endocrine cell types, each producing a characteristic hormone. The dysfunction or loss of the insulin-producing β cells causes diabetes mellitus, a disease that harms millions. Until now, β cells were generally regarded as a single, homogenous cell population. Here we identify four antigenically distinct subtypes of human β cells, which we refer to as β1–4, and which are distinguished by differential expression of ST8SIA1 and CD9. These subpopulations are always present in normal adult islets and have diverse gene expression profiles and distinct basal and glucose-stimulated insulin secretion. Importantly, the β cell subtype distribution is profoundly altered in type 2 diabetes. These data suggest that this antigenically defined β cell heterogeneity is functionally and likely medically relevant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.