The synthesis and characterization of mixed ligand 2,2';6',2' '-terpyridine (tpy) ruthenium complexes with 2,6-bis([1,2,4]triazol-3-yl)pyridine, 2,6-bis(5-phenyl-[1,2,4]triazol-3-yl)pyridine, and 2,6-bis([1,2,3,4]tetrazol-5-yl)pyridine are reported. The species are characterized by HPLC, 1H NMR, UV/vis, and emission spectroscopy. The photophysical properties of the complexes are investigated as a function of temperature over the range 80-320 K. The emission lifetime observed for the fully deprotonated compounds at room temperature is about 80 ns. This increase by 2 orders of magnitude with respect to the parent "[Ru(tpy)2](2+)" complex is rationalized by an increase in the energy of the metal based dsigma orbital, rather than by manipulation of the pi* orbitals on the ligands. The acid-base and electrochemical properties of the compounds are reported also.
We employ grand canonical ensemble Monte Carlo simulations to investigate the impact of substrate curvature on the phase behavior of an adjacent fluid. The substrates consist of a periodic sequence of grooves in the x direction; the grooves are infinitely long in the y direction. The shape of the grooves is controlled by a parameter eta. For eta = 0 the substrates are planar. If eta = 1, the grooves are wedge shaped. If eta > 1 the grooves become concave and in the limit eta = infinity rectangular. The fluid-substrate potential representing a groove consists of two contributions, namely, that of the homogeneous substrate base corresponding to a semi-infinite solid and that of a finite piece of solid with nonplanar surfaces. Whereas the former contribution can be calculated analytically, the latter needs to be evaluated numerically. For very large values of eta, that is in (almost) rectangular grooves, we observe capillary condensation of that portion of fluid located inside the grooves. As eta decreases capillary condensation gives way to continuous filling. In all cases, a nearly planar film-gas interface eventually forms in the direction normal to the surface of the substrate base and outside the grooves if one increases the chemical potential sufficiently.
We study the shape of gas-liquid interfaces forming inside rectangular nanogrooves (i.e., slit-pores capped on one end). On account of purely repulsive fluid-substrate interactions the confining walls are dry (i.e., wet by vapor) and a liquid-vapor interface intrudes into the nanogrooves to a distance determined by the pressure (i.e., chemical potential). By means of Monte Carlo simulations in the grand-canonical ensemble (GCEMC) we obtain the density rho(z) along the midline (x = 0) of the nanogroove for various geometries (i.e., depths D and widths L) of the nanogroove. We analyze the density profiles with the aid of an analytic expression which we obtain through a transfer-matrix treatment of a one-dimensional effective interface Hamiltonian. Besides geometrical parameters such as D and L , the resulting analytic expression depends on temperature T , densities of coexisting gas and liquid phases in the bulk rho g,l(x) and the interfacial tension gamma. The latter three quantities are determined in independent molecular dynamics simulations of planar gas-liquid interfaces. Our results indicate that the analytic formula provides an excellent representation of rho(z) as long as L is sufficiently small. At larger L the meniscus of the intruding liquid flattens. Under these conditions the transfer-matrix analysis is no longer adequate and the agreement between GCEMC data and the analytic treatment is less satisfactory.
We employ Monte Carlo simulations in the grand canonical ensemble (GCEMC) to investigate the impact of nonplanarity of a solid substrate on the locus of the prewetting phase transition. The substrate is modelled as a periodic sequence of furrows of depth D and periodicity sx in the x direction; the furrows are infinitely long in the y direction. Our results indicate that a necessary prerequisite for a prewetting transition is the formation of a(n approximately) planar interface between molecularly thin films and an adjacent (bulk) gas. Thus, in general the prewetting transition is shifted to larger chemical potentials because the formation of a planar film-gas interface is more difficult next to a nonplanar compared with a planar solid surface. However, this shift turns out to be nonmonotonic depending on D on account of subtle packing effects manifested in the deviation of the local density Deltarho(x,Deltaz;D) at the nonplanar solid surface from that at a planar substrate. If D becomes sufficiently large prewetting as a discontinuous phase transition is suppressed because inside the furrow a highly ordered film forms that prevents a planar film-gas interface from forming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.