BackgroundExperimental and clinical studies show that prematurity leads to altered left ventricular (LV) structure and function with preserved resting LV ejection fraction (EF). Large-scale epidemiological data now links prematurity to increased early heart failure risk.ObjectivesThe authors performed echocardiographic imaging at prescribed exercise intensities to determine whether preterm-born adults have impaired LV functional response to physical exercise.MethodsWe recruited 101 normotensive young adults born preterm (n = 47; mean gestational age 32.8 ± 3.2 weeks) and term (n = 54) for detailed cardiovascular phenotyping. Full clinical resting and exercise stress echocardiograms were performed, with apical 4-chamber views collected while exercising at 40%, 60%, and 80% of peak exercise capacity, determined by maximal cardiopulmonary exercise testing.ResultsPreterm-born individuals had greater LV mass (p = 0.015) with lower peak systolic longitudinal strain (p = 0.038) and similar EF to term-born control subjects at rest (p = 0.62). However, by 60% exercise intensity, EF was 6.7% lower in preterm subjects (71.9 ± 8.7% vs 78.6 ± 5.4%; p = 0.004) and further declined to 7.3% below the term-born group at 80% exercise intensity (69.8 ± 6.4% vs 77.1 ± 6.3%; p = 0.004). Submaximal cardiac output reserve was 56% lower in preterm-born subjects versus term-born control subjects at 40% of peak exercise capacity (729 ± 1,162 ml/min/m2 vs. 1,669 ± 937 ml/min/m2; p = 0.021). LV length and resting peak systolic longitudinal strain predicted EF increase from rest to 60% exercise intensity in the preterm group (r = 0.68, p = 0.009 and r = 0.56, p = 0.031, respectively).ConclusionsPreterm-born young adults had impaired LV response to physiological stress when subjected to physical exercise, which suggested a reduced myocardial functional reserve that might help explain their increased risk of early heart failure. (Young Adult Cardiovascular Health sTudy [YACHT]; NCT02103231)
Women with hypertensive pregnancies are 4× more likely to develop chronic hypertension. Previously, we showed a short period of blood pressure (BP) self-management following hypertensive pregnancy resulted in persistently lower BP after 6 months. We now report the impact on long-term BP control. Women who participated in the postpartum randomized controlled trial, SNAP-HT (Self-Management of Postnatal Hypertension; NCT02333240), were invited for 24-hour ambulatory and clinic BP measures. Height and weight were measured by calibrated scales and standardized tape measures, activity by 7-day wrist-worn accelerometer, and dietary factors assessed by questionnaire. Sixty-one of 70 eligible women were followed up 3.6±0.4 years after their original pregnancy. Twenty-four–hour diastolic BP was 7.0 mm Hg lower in those originally randomized to postpartum BP self-management instead of usual care. This difference remained significant after adjustment for either BP at the time of delivery (−7.4 mm Hg [95% CI, −10.7 to −4.2]; P <0.001) or pregnancy booking BP (−6.9 mm Hg [95% CI, −10.3 to −3.6]; P <0.001). Adjustment for current salt intake, age, body mass index, waist-to-hip ratio, arm circumference, parity, alcohol intake, and physical activity had no effect on this difference. Reductions in diastolic BP at 6 months, following self-management of BP postpartum, are maintained 3.6 years later as measured by lower 24-hour diastolic BP. Interventions to optimize BP control during the puerperium in women with hypertensive pregnancies improve BP in the longer term, in a cohort at increased risk of developing chronic hypertension and major adverse cardiovascular events. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02333240.
Aims We tested the hypothesis that the known reduction in myocardial functional reserve in preterm-born young adults is an independent predictor of exercise capacity (peak VO2) and heart rate recovery (HRR). Methods and results We recruited 101 normotensive young adults (n = 47 born preterm; 32.8 ± 3.2 weeks’ gestation and n = 54 term-born controls). Peak VO2 was determined by cardiopulmonary exercise testing (CPET), and lung function assessed using spirometry. Percentage predicted values were then calculated. HRR was defined as the decrease from peak HR to 1 min (HRR1) and 2 min of recovery (HRR2). Four-chamber echocardiography views were acquired at rest and exercise at 40% and 60% of CPET peak power. Change in left ventricular ejection fraction from rest to each work intensity was calculated (EFΔ40% and EFΔ60%) to estimate myocardial functional reserve. Peak VO2 and per cent of predicted peak VO2 were lower in preterm-born young adults compared with controls (33.6 ± 8.6 vs. 40.1 ± 9.0 mL/kg/min, P = 0.003 and 94% ± 20% vs. 108% ± 25%, P = 0.001). HRR1 was similar between groups. HRR2 decreased less in preterm-born young adults compared with controls (−36 ± 13 vs. −43 ± 11 b.p.m., P = 0.039). In young adults born preterm, but not in controls, EFΔ40% and EFΔ60% correlated with per cent of predicted peak VO2 (r2 = 0.430, P = 0.015 and r2 = 0.345, P = 0.021). Similarly, EFΔ60% correlated with HRR1 and HRR2 only in those born preterm (r2 = 0.611, P = 0.002 and r2 = 0.663, P = 0.001). Conclusions Impaired myocardial functional reserve underlies reductions in peak VO2 and HRR in young adults born moderately preterm. Peak VO2 and HRR may aid risk stratification and treatment monitoring in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.