Unmodified blends of two thermoplastic polyurethanes (TPU) and six polyolefines were used to study the influence of the component viscosities on the blend morphology and mechanical properties. Blends were produced by melt mixing using a twin screw extruder. Interactions between the blend components could not be detected by DSC, DMA, selective extraction, and SEM micrographs of cryofractures. The variation in tensile strength with blend composition produce a U-shaped curve with the minimum between 40 and 60 wt % of polyolefine. At similar viscosity ratios (h d /h m ), blends with polyether based TPU (TPU-eth) have a finer morphology than blends with polyester based TPU (TPU-est). This is due to the lower surface free energy of the polyether soft segments compared to the polyester soft segments. Different morphologies also lead to changes in mechanical behavior. Blends with TPU-eth show a lower decrease in tensile strength with blend composition than blends with TPU-est. The viscosity ratio between TPU and polyolefines can be directly correlated to the blend morphology obtained under similar blending conditions. TPU/PE blends show a lower dispersity than TPU/PP blends, due to the higher viscosity ratios of TPU/PE blends. This results in a greater reduction in tensile strength with the disperse phase content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.