Based on molecular data three major clades have been recognized within Bilateria: Deuterostomia, Ecdysozoa, and Spiralia. Within Spiralia, small-sized and simply organized animals such as flatworms, gastrotrichs, and gnathostomulids have recently been grouped together as Platyzoa. However, the representation of putative platyzoans was low in the respective molecular phylogenetic studies, in terms of both, taxon number and sequence data. Furthermore, increased substitution rates in platyzoan taxa raised the possibility that monophyletic Platyzoa represents an artifact due to long-branch attraction. In order to overcome such problems, we employed a phylogenomic approach, thereby substantially increasing 1) the number of sampled species within Platyzoa and 2) species-specific sequence coverage in data sets of up to 82,162 amino acid positions. Using established and new measures (long-branch score), we disentangled phylogenetic signal from misleading effects such as long-branch attraction. In doing so, our phylogenomic analyses did not recover a monophyletic origin of platyzoan taxa that, instead, appeared paraphyletic with respect to the other spiralians. Platyhelminthes and Gastrotricha formed a monophylum, which we name Rouphozoa. To the exclusion of Gnathifera, Rouphozoa and all other spiralians represent a monophyletic group, which we name Platytrochozoa. Platyzoan paraphyly suggests that the last common ancestor of Spiralia was a simple-bodied organism lacking coelomic cavities, segmentation, and complex brain structures, and that more complex animals such as annelids evolved from such a simply organized ancestor. This conclusion contradicts alternative evolutionary scenarios proposing an annelid-like ancestor of Bilateria and Spiralia and several independent events of secondary reduction.
Phylogenetic analyses based on 79 ribosomal proteins of 38 metazoans, partly derived from 6 new expressed sequence tag projects for Ectoprocta, Entoprocta, Sipuncula, Annelida, and Acanthocephala, indicate the monophyly of Bryozoa comprising Ectoprocta and Entoprocta, 2 taxa that have been separated for more than a century based on seemingly profound morphological differences. Our results also show that bryozoans are more closely related to Neotrochozoa, including molluscs and annelids, than to Syndermata, the latter comprising Rotifera and Acanthocephala. Furthermore, we find evidence for the position of Sipuncula within Annelida. These findings suggest that classical developmental and morphological key characters such as cleavage pattern, coelomic cavities, gut architecture, and body segmentation are subject to greater evolutionary plasticity than traditionally assumed.
The pharynx of Gnathostomula paradoxa consists of the partly syncytial pharyngeal musculature, a pharyngeal epithelium, myoepitheliocytes, receptors, nerves, and three solid parts, called the jugum, the basal plate, and the jaw. Extended non-contractile regions of both pharyngeal and body wall musculature form the socalled parenchymatous tissue between the digestive tract and the body wall. The pharyngeal epithelium mediates the force from the pharyngeal musculature to the solid parts. The basal plate and jaw contain longitudinal cuticular rods which are elastic antagonists of the musculature. There is no buccal ganglion in G. paradoxa. The study supports the monophyly of the Gnathostomulida and Gnathifera.& b d y :
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.