Domain specific languages (DSLs) are increasingly used today. Coping with complex language definitions, evolving them in a structured way, and ensuring their error freeness are the main challenges of DSL design and implementation. The use of modular language definitions and composition operators are therefore inevitable in the independent development of language components. In this article, we discuss these arising issues by describing a framework for the compositional development of textual DSLs and their supporting tools. We use a redundance-free definition of a readable concrete syntax and a comprehensible abstract syntax as both representations significantly overlap in their structure. For enhancing the usability of the abstract syntax, we added concepts like associations and inheritance to a grammarbased definition in order to build up arbitrary graphs (as known from metamodeling). Two modularity concepts, grammar inheritance and embedding, are discussed. They permit compositional language definition and thus simplify the extension of languages based on already existing ones. We demonstrate that compositional engineering of new languages is a useful concept when project-individual DSLs with appropriate tool support are defined.
Reuse is a key technique for a more efficient development and ensures the quality of the results. In object technology explicit encapsulation, interfaces, and inheritance are well-known principles for independent development that enable combination and reuse of developed artifacts. In this paper we apply modularity concepts for domain specific languages (DSLs) and discuss how they help to design new languages by extending existing ones and composing fragments to new DSLs. We use an extended grammar format with appropriate tool support that avoids redefinition of existing functionalities by introducing language inheritance and embedding as first class artifacts in a DSL definition. Language embedding and inheritance is not only assisted by the parser, but also by the editor, and algorithms based on tree traversal like context checkers, pretty printers, and code generators. We demonstrate that compositional engineering of new languages becomes a useful concept when starting to define project-individual DSLs using appropriate tool support.
Abstract. Wireless sensor networks increasingly become viable solutions to many challenging problems and will successively be deployed in many areas in the future. However, deploying new technology without security in mind has often proved to be unreasonably dangerous. We propose a security architecture for self-organizing mobile wireless sensor networks that prevents many attacks these networks are exposed to. Furthermore, it limits the security impact of some attacks that cannot be prevented. We analyse our security architecure and show that it provides the desired security aspects while still being a lightweight solution and thus being applicable for self-organizing mobile wireless sensor networks.
Abstract. An understandable concrete syntax and a comprehensible abstract syntax are two central aspects of defining a modeling language. Both representations of a language significantly overlap in their structure and also information, but may also differ in parts of the information. To avoid discrepancies and problems while handling the language, concrete and abstract syntax need to be consistently defined. This will become an even bigger problem, when domain specific languages will become used to a larger extent. In this paper we present an extended grammar format that avoids redundancy between concrete and abstract syntax by allowing an integrated definition of both for textual modeling languages. For an amendment of the usability of the abstract syntax it furthermore integrates meta-modeling concepts like associations and inheritance into a well-understood grammar-based approach. This forms a sound foundation for an extensible grammar and therefore language definition.
Abstract. Due to the increased complexity of software development projects more and more systems are described by models. The sheer size makes it impractical to describe these systems by a single model. Instead many models are developed that provide several complementary views on the system to be developed. This however leads to a need for compositional models. This paper describes a foundational theory of model composition in form of an algebra to explicitly clarify different variants and uses of composition, their interplay with the semantics of the involved models and their composition operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.