Abstract:The link between spatiotemporal patterns of stream water chemistry and catchment characteristics for the mesoscale Dill catchment (692 km 2 ) in Germany is explored to assess the catchment scale controls on water quality and to characterize water sources. In order to record the spatiotemporal pattern, 'snapshot sampling' was applied during low, mean and high flow, including 73 nested sites throughout the catchment. Water samples were analysed for the elements Li, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Mo, Ba, Pb and U using inductively-coupled-plasma mass spectrometry, and for electric conductivity and pH. Principle component analysis and hierarchical cluster analysis were used to find typical element associations and to group water samples according to their hydrochemical fingerprints. This revealed regional hydrochemical patterns of water quality which were subsequently related to catchment attributes to draw conclusions about the controls on stream chemistry. It was found that various lithologic signals and anthropogenic point source inputs controlled the base flow hydrochemistry. During increased flows, stream waters were diluted causing additional hydrochemical variability in response to heterogeneous precipitation inputs and differences in aquifer storage capacities. The hydrochemical patterns further displayed in-stream mixing of waters. This implied, that stream waters could be apportioned to the identified water sources throughout the catchment. The basin-wide hydrochemical variability has the potential to outrange the tracer signatures typically inferred in studies at the hillslope scale and is able to strongly influence the complexity of the catchment output. Both have to be considered for further catchment scale tracer and modelling work. Despite the likelihood of non-conservative behaviour, the minor and trace elements enhanced the rather qualitative discrimination of the various groundwater types, as the major cations were strongly masked by point source inputs.
This study aimed at tracing and quantifying organic carbon and total nitrogen fluxes related to suspended material in irrigation water in the uplands of northwest Vietnam. In the study area, a reservoir acts as a sink for sediments from the surrounding mountains, feeding irrigation channels to irrigate lowland paddy systems. A flow separation identified the flow components of overland flow, water release from the reservoir to the irrigation channel, direct precipitation into the channel, irrigation discharge to paddy fields and discharge leaving the sub-watershed. A mixed effects model was used to assess the C and N loads of each flow component. Irrigation water had an average baseline concentration of 29 ± 4.4 mg l -1 inorganic C, 4.7 ± 1.2 mg l -1 organic C and 3.9 ± 1.6 mg l -1 total N. Once soils were rewetted and overland flow was induced, organic C and total N concentrations changed rapidly due to increasing sediment loads in the irrigation water. Summarizing all monitored events, overland flow was estimated to convey about 63 kg organic C ha -1 and 8.5 kg N ha -1 from surrounding upland fields to the irrigation channel. The drainage of various nonpoint sources towards the irrigation channel was supported by the variation of the estimated organic C/total N ratios of the overland flow which fluctuated between 2 and 7. Nevertheless, the majority of the nutrient loads (up to 93-99%) were derived from the reservoir, which served as a sediment-buffer trap. Due to the overall high nutrient and sediment content of the reservoir water used for irrigation, a significant proportion of nutrients was continuously reallocated to the paddy fields in the lowland throughout the rice cropping season. The cumulative amount of organic C and total N load entering paddies with the irrigation water between May and September was estimated at 0.8 and 0.7 Mg ha -1 , respectively. Therefore deposition of C and N through irrigation is an important contributor in maintaining soil fertility, and a process to be taken into account in the soil fertility management in these paddy rice systems.
The effect of catchment complexity on hydrologic and hydrochemical catchment response was characterized in the mesoscale Dill catchment (692 km2), Germany. This analysis was developed using multivariate daily stream concentration and discharge data at the basin outlet, in connection with less frequently sampled catchment‐wide end‐member chemistries. The link between catchment‐wide runoff sources and basin output was observed through a combination of concentration‐discharge (C‐Q) analysis and multivariate end‐member projection. Subsurface stormflow, various groundwater and wastewater sources, as well as urban surface runoff emerged in catchment output chemistry. Despite the identification of multiple sources, several runoff sources observed within the catchment failed to display consistent links with the output chemistry. This failure to associate known source chemistry with outlet chemistry may have resulted from a lack of hydraulic connectivity between sources and basin outlet, from different arrival times of subbasin‐scale runoff contributions, and also from an overlap of source chemistries that subsumed discrete runoff sources in catchment output. This combination of catchment heterogeneity and complexity simply suggests that the internal spatial organization of the catchment impeded the application of lumped mixing calculations at the 692 km2 outlet. Given these challenges, we suggest that in mesoscale catchment research, the potential effects of spatial organization should be included in any interpretation of highly integrated response signals, or when using those signals to evaluate numerical rainfall‐runoff models.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.