The specific lactate production during NIFET is neither sufficiently specific nor sensitive for the diagnosis of mitochondrial disorders. Increased specific lactate production during rest-to-work transition period might be caused by increased acetyl group deficits.
Background/Aims: Mechanical strain of the lung tissue is a physiological process that affects the behavior of lung cells. Since recent evidence also suggests alterations in the expression of certain genes as a consequence of mechanotransduction, our study aimed at the analysis of the gene expression profile in lung epithelial cells subjected to chronic cyclic strain. Methods: Various human lung epithelial cell lines (A549 as principal adherent cell line and four others) were subjected to cyclic strain (16 % surface distension, 12 min-1) in a Strain Cell Culture Device for 24 h. In comparison to static controls, expression analyses were performed by gene microarray and qPCR. Results: Microarray analysis revealed many differences in the gene expression but at moderate levels. Altogether 25 genes were moderately down-regulated (0.86-fold ± 0.06) and 26 genes were up-regulated (1.18-fold ± 0.10) in A549 and the others. Strain-regulated genes often code for transcription factors, such as E2F4 and SRF. qPCR analyses confirmed the up-regulation of both transcription factors and further genes, such as PLAU (urokinase-type plasminogen activator) and S100A4 (S100 protein A4). Moreover, we showed the down-regulations of AGR2 (anterior gradient 2) and LCN2 (lipocalin 2). Conclusions: We identified many genes of which the expression was moderately altered in lung epithelial cells subjected to chronic cyclic strain. Although many moderate changes in the gene expression profile might affect cellular behavior, it also suggests an effective adaptation of cells to mechanical forces in long-term conditions.
The worsening of olfactory detection thresholds during acute aerobic physical exercise and their immediate improvement during recovery phase to rest values suggests that the detection threshold is influenced by exercise. The most probable cause for this is a dilution effect caused by additional inflowing neutral ambient air in the case of forced nasal breathing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.