Neuroblastoma is a malignancy of the developing sympathetic nervous system that is often lethal when relapse occurs. We here used whole-exome sequencing, mRNA expression profiling, array CGH and DNA methylation analysis to characterize 16 paired samples at diagnosis and relapse from individuals with neuroblastoma. The mutational burden significantly increased in relapsing tumors, accompanied by altered mutational signatures and reduced subclonal heterogeneity. Global allele frequencies at relapse indicated clonal mutation selection during disease progression. Promoter methylation patterns were consistent over disease course and were patient specific. Recurrent alterations at relapse included mutations in the putative CHD5 neuroblastoma tumor suppressor, chromosome 9p losses, DOCK8 mutations, inactivating mutations in PTPN14 and a relapse-specific activity pattern for the PTPN14 target YAP. Recurrent new mutations in HRAS, KRAS and genes mediating cell-cell interaction in 13 of 16 relapse tumors indicate disturbances in signaling pathways mediating mesenchymal transition. Our data shed light on genetic alteration frequency, identity and evolution in neuroblastoma.
Self-immolative dendrimers have recently been developed and introduced as a potential platform for a multi-prodrug. These unique structural dendrimers can release all of their tail units, through a self-immolative chain fragmentation, which is initiated by a single cleavage at the dendrimer's core. Incorporation of drug molecules as the tail units and an enzyme substrate as the trigger can generate a multi-prodrug unit that will be activated with a single enzymatic cleavage. We have synthesized the first generation of dendritic prodrugs with doxorubicin and camptothecin as tail units and a retro-aldol retro-Michael focal trigger, which can be cleaved by catalytic antibody 38C2. The bioactivation of the dendritic prodrugs was evaluated in cell-growth inhibition assay with the Molt-3 leukemia cell line in the presence and the absence of antibody 38C2. The dendritic unit was applied as a platform for a heterodimeric prodrug, which achieved a remarkable increase in toxicity with its bioactivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.