Echo-enhanced power Doppler sonography has a high sensitivity and specificity in the differential diagnosis of pancreatic tumours. However, histology is the standard of reference.
Background/Aim: In recent years, power Doppler sonography has been proposed as a method to assess disease activity in patients with Crohn’s disease. The aim of this prospective study was to evaluate diagnostic criteria for power Doppler sonography by blinded comparison with ileocolonoscopy. Methods: Twenty-two patients with confirmed Crohn’s disease were prospectively investigated with B-mode and power Doppler sonography (HDI 5000, Philips Ultrasound) as well as ileocolonoscopy. Sonography was performed within 3 days before endoscopy. All procedures were performed by experienced examiners who were blinded to the clinical data and other results. Defined ultrasound parameters (bowel wall thickness, vascularization pattern) were used to determine a sonographic score of the activity. The degree of activity was scored from 1 (none) to 4 (high) by both ultrasound and ileocolonoscopy (pattern, extent of typical lesions). For each patient all segments of the colon and the terminal ileum were evaluated by both ultrasound and endoscopy. The weighted ĸ test was used (StatXact software) for statistical analysis. Results: In total, 126 bowel segments were evaluated by both ultrasound and endoscopy. The study showed a high concordance of power Doppler sonography and ileocolonoscopy (weighted ĸ by region: sigmoid colon: 0.81; transverse colon: 0.78; ascending colon: 0.75; cecum: 0.84; terminal ileum: 0.82). Highest concordance was found in the descending colon (weighted ĸ: 0.91; 95% CI: 0.83–0.98). Conclusions: Combination of B-mode and power Doppler sonography has a high accuracy in the determination of disease activity in Crohn’s disease when compared to ileocolonoscopy. The diagnostic criteria established in this study can be useful for the evaluation of inflammatory bowel diseases by ultrasound.
Echo-enhanced power Doppler sonography has high sensitivity and high specificity for the differentiation of neuroendocrine lesions from other pancreatic tumors. However, histologic evidence is the standard of reference for the differential diagnosis of pancreatic tumors.
The effects of purinergic agonists on insulin release are controversial in the literature. In our studies (mainly using INS-1 cells, but also using rat pancreatic islets), ATP had a dual effect on insulin release depending on the ATP concentration: increasing insulin release (EC50 approximately/= 0.0032 microM) and inhibiting insulin release (EC50 approximately/= 0.32 microM) at both 5.6 and 8.3 mM glucose. This is compatible with the view that either two different receptors are involved, or the cells desensitize and (or) the effect of an inhibitory degradation product such as adenosine (ectonucleotidase effect) emerges. The same dual effects of ATP on insulin release were obtained using rat pancreatic islets instead of INS-1 cells. ADPbetaS, which is less degradable than ATP and rather specific for P2Y1 receptors, had a dual effect on insulin release at 8.3 mM glucose: stimulatory (EC50 approximately/= 0.02 microM) and inhibitory (EC50 approximately/= 0.32 microM). The effectiveness of this compound indicates the possible involvement of a P2Y1 receptor. 2-Methylthio-ATP exhibited an insulinotropic effect at very high concentrations (EC50 approximately/= 15 microM at 8.3 mM glucose). This indicated that distinct P2X or the P2Y1 receptor may be involved in these insulin-secreting cells. UTP increased insulin release (EC50 approximately/= 2 microM) very weakly, indicating that a P2U receptor (P2X3 or possibly a P2Y2 or P2Y4) are not likely to be involved. Suramin (50 microM) antagonized the insulinotropic effect of ATP (0.01 microM) and UTP (0.32 microM). Since suramin is not selective, the data indicated that various P2X and P2Y receptors may be involved. PPADS (100 microM), a P2X and P2Y1,4,6 receptor antagonist, was ineffective using either low or high concentrations of ATP and ADPbetaS, which combined with the suramin data hints at a P2Y receptor effect of the compounds. Adenosine inhibited insulin release in a concentration-dependent manner. DPCPX (100 microM), an adenosine (A1) receptor antagonist, inhibited the inhibitory effects of both adenosine and of high concentrations of ATP. Adenosine deaminase (1 U/mL) abolished the inhibitory effect of high ATP concentrations, indicating the involvement of the degradation product adenosine. Repetitive addition of ATP did not desensitize the stimulatory effect of ATP. U-73122 (2 microM), a PLC inhibitor, abolished the ATP effect at low concentrations. The data indicate that ATP at low concentrations is effective via P2Y receptors and the PLC-system and not via P2X receptors; it inhibits insulin release at high concentrations by being metabolized to adenosine.
Both 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (ATRA) are active metabolites of vitamin A (retinol). There exists an interaction between retinoid receptors and peroxisome proliferator-activated receptors (PPARgamma). To define their functions in an insulin secreting system the effects of ATRA, 9cRA and the PPARgamma agonist rosiglitazone on cell proliferation, insulin release and glucose transporter (GLUT) 2 of INS-1 cells were tested. Retinoic acid receptor (RAR-alpha and -gamma) and retinoid X receptor (RXR-alpha and -beta) proteins are present (immunoblots). Both 9cRA and ATRA inhibit INS-1 cell proliferation ([3H]-thymidine assay) in a concentration dependent manner. Both 9cRA and ATRA increased insulin release, but only ATRA ralsed the GLUT 2 mRNA in a bell-shaped concentration response curve after 48 h. The insulinotropic effect of one compound is not significantly superimposed by the other indicating that the same binding sites are used by 9cRA and ATRA. The acute and chronic effects of the PPARgamma agonist rosiglitazone on insulin release were additionally determined since glitazones act as transcription factors together with RXR agonists. At high concentrations (100 microM) rosiglitazone inhibited glucose (8.3 mM) stimulated insulin secretion (acute experiment over 60 min). Insulin secretion, however, was increased during a 24 h treatment at a concentration of 10 microM and again inhibited at 100 microM. Changes in preproinsulin mRNA expression were not observed. Rosiglitazone (100 microM) increased GLUT 2 mRNA paralleled by an increase of GLUT 2 protein, but only after 24 h of treatment. This data indicate that RAR and RXR mediate insulin release. The changes in GLUT 2 have no direct impact on insulin release; the inhibition seen at high concentrations of either compound is possibly the result of the observed inhibition of cell proliferation. Effects of rosiglitazone on preproinsulin mRNA and GLUT 2 (mRNA and protein) do not play a role in modulating insulin secretion. With the presence of an RXR receptor agonist the effect of rosiglitazone on insulin release becomes stimulatory. Thus the effects of RAR-, RXR agonists and rosiglitazone depend on their concentrations, the duration of their presence and are due to specific interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.