The structure of the title compound, 2C18H19ClN4O·HCl or (CNO)2·HCl (C36H39Cl3N8O2), at 100 K has tetragonal (I4/m) symmetry. The dihedral angle between the benzene rings of the fused ring system of the CNO molecule is 40.08 (6)° and the equivalent angle between the seven-membered ring and its pendant N-oxide ring is 31.14 (7)°. The structure contains a very strong, symmetrical O—H...O hydrogen bond [O...O = 2.434 (2) Å] between two equivalent R
3N+—O− moieties, which share a proton lying on a crystallographic twofold rotation axis. These units then form a (CNO)4·(HCl)2 ring by way of two equivalent N—H...Cl hydrogen bonds (Cl− site symmetry m). These rings are catenated into infinite chains propagating along the c-axis direction by way of shape complementarity and directional C—H...N and C—H...π interactions.
The rigorous analysis of crystallographic models, refined through the use of least-squares minimization, is founded on the expectation that the data provided have a normal distribution of residuals. Processed single-crystal diffraction data rarely exhibit this feature without a weighting scheme being applied. These schemes are designed to reflect the precision and accuracy of the measurement of observed reflection intensities. While many programs have the ability to calculate optimal parameters for applied weighting schemes, there are still programs that do not contain this functionality, particularly when moving beyond the spherical atom model. For this purpose, CAPOW (calculation and plotting of optimal weights), a new program for the calculation of optimal weighting parameters for a SHELXL weighting scheme, is presented and an example of its application in a multipole refinement is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.