Extreme cooling rates during physical vapor deposition (PVD) allow growth of metastable phases. However, we propose that reactive PVD processes can be described by a gas-solid paraequilibrium defining chemical composition and thus point defect concentration. We show that this notion allows for point defect engineering by controlling deposition conditions. As example we demonstrate that thermal stability of metastable (Ti,Al)N x , the industrial benchmark coating for wear protection, can be increased from 800°C to unprecedented 1200°C by minimizing the vacancy concentration. The thermodynamic approach formulated here opens a pathway for thermal stability engineering by point defects in reactively deposited thin films.
IMPACT STATEMENTA novel thermodynamic methodology to predict stoichiometry of coatings is utilized to increase thermal stability of today's industrial benchmark hard coating TiAlN from 800°C to 1200°C by point defect engineering.
ARTICLE HISTORY
Transition metal carbides are used for various applications such as hard coating, heterogeneous catalysis, catalyst support material or coatings in fuel cell applications. However, little is known about the stability of their electrochemically active surface in aqueous electrolytes. Herein, the transition metal—carbon bond enthalpy is proposed as stability criterion for various transition metal carbides. The basis is an oxidation mechanism where the rate determining step is the metal—carbon bond cleavage under acidic conditions which was supported by a detailed corrosion study on hexagonal tungsten carbide. In situ flow cell measurements that were coupled to an inductively coupled plasma mass spectrometer corroborated experimentally the linear dependency of the oxidation overpotential on the transition metal—carbon bond enthalpy. The proposed model allows the estimation of the activation overpotential for electrochemical carbide oxidation resulting in a maximized stabilization for carbides in the 4th group (Ti, Zr, Hf). Together with the calculated thermodynamic oxidation potentials, TiC and VC exhibit the highest experimental oxidation potentials (0.85 VRHE). The model can be used for preselecting possible carbide materials for various electrochemical reactions.
Correlatively employing density functional theory and experiments congregated around high power pulsed magnetron sputtering, a plasma-surface model for metastable Cr0.8Al0.2N (space group Fm3¯m) is developed. This plasma-surface model relates plasma energetics with film composition, crystal structure, mass density, stress state, and elastic properties. It is predicted that N Frenkel pairs form during Cr0.8Al0.2N growth due to high-energy ion irradiation, yielding a mass density of 5.69 g cm−3 at room temperature and Young's modulus of 358–130 GPa in the temperature range of 50–700 K for the stress-free state and about 150 GPa larger values for the compressive stress of 4 GPa. Our measurements are consistent with the quantum mechanical predictions within 5% for the mass density and 3% for Young's modulus. The hypothesis of a stress-induced Young's modulus change may at least in part explain the spread in the reported elasticity data ranging from 250 to 420 GPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.