We consider a minimalistic dynamic model of the idiotypic network of B-lymphocytes. A network node represents a population of B-lymphocytes of the same specificity (idiotype), which is encoded by a bitstring. The links of the network connect nodes with complementary and nearly complementary bitstrings, allowing for a few mismatches. A node is occupied if a lymphocyte clone of the corresponding idiotype exists, otherwise it is empty. There is a continuous influx of new B-lymphocytes of random idiotype from the bone marrow. B-lymphocytes are stimulated by cross-linking their receptors with complementary structures. If there are too many complementary structures, steric hindrance prevents cross-linking. Stimulated cells proliferate and secrete antibodies of the same idiotype as their receptors, unstimulated lymphocytes die.Depending on few parameters, the autonomous system evolves randomly towards patterns of highly organized architecture, where the nodes can be classified into groups according to their statistical properties. We observe and describe analytically the building principles of these patterns, which allow to calculate number and size of the node groups and the number of links between them. The architecture of all patterns observed so far in simulations can be explained this way. A tool for real-time pattern identification is proposed.
We develop a modular mean field theory for a minimalistic model of the idiotypic network. The model comprises the random influx of new idiotypes and a deterministic selection. It describes the evolution of the idiotypic network towards complex modular architectures, the building principles of which are known. The nodes of the network can be classified into groups of nodes, the modules, which share statistical properties. Each node experiences only the mean influence of the groups to which it is linked. Given the size of the groups and linking between them the statistical properties such as mean occupation, mean life time, and mean number of occupied neighbors are calculated for a variety of patterns and compared with simulations. For a pattern which consists of pairs of occupied nodes correlations are taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.