Real-time quantification of Pseudomonas aeruginosa was performed in various wastewater systems including clinical, municipal wastewaters and inflow from a wastewater treatment plant. The highest concentrations of P. aeruginosa-specific targets were detected in clinical wastewaters. Limitations of the detection system resulting from inhibition or cross-reaction were identified. Ciprofloxacin-resistant P. aeruginosa strains were isolated after specific enrichment from clinical and municipal wastewaters. In some cases they were also cultivated from effluent of a wastewater treatment plant, and from its downstream river water. A total of 119 isolates were phenotypically characterized as ciprofloxacin-resistant via antibiogram testing. Subsequently, the fluoroquinolone-resistance-mediating mutations in the genes gyrA codon positions 83 and 87, gyrB codon position 466 and parC codon positions 87 and 91 were determined by mini-sequencing. Ciprofloxacin resistance was mainly associated with mutations in gyrA codon position 83 and parC mutation in codon positions 87 or 91 of the bacterial gyrase and topoisomerase II genes. All ciprofloxacin-resistant P. aeruginosa strains were compared with genotypes from clinical data of fluoroquinolone-resistant P. aeruginosa infections. The results were in agreement with data from clinical analyses, with the exception that no gyrA 87 and no gyrB mutations were found in ciprofloxacin-resistant P. aeruginosa wastewater isolates.
Biofilm-forming bacteria are ubiquitous in the environment and also include biofilm-forming pathogens. Environmental biofilms may form a reservoir for risk genes and may act as a challenge for human health. Examples of the health relevance of biofilms are the increase in antibiotic resistant bacteria hosted in biofilms in hospital and environment and consequently the interaction of these bacteria with human cells, e.g. in the immune system.
Although data concerning the occurrence and spread of resistant bacteria within hospital care units are available, the fate of these bacteria in the environment and especially in the aquatic environment has barely been investigated. Once antibiotic resistant bacteria have entered the environment, a back coupling by ingestion or other possible entry into the host has to be prevented. Therefore a strategy to investigate paths of entry, accumulation and spread of resistant bacteria in environmental compartments has been developed using quantitative determination of genetic resistance determinants. Additionally a bacterial bioassay assessed bioeffectivity thresholds of low antibiotic concentrations. This approach enables an evaluation of the potential of contaminated waters to exert a selection pressure on bacterial communities and thus promote the persistence of resistant organisms. Completed with an indicator system for the identification of sources of multiresistant bacteria a concept for monitoring and evaluation of environmental compartments with respect to their potential of antibiotic resistance dissemination is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.