These data unprecedentedly uncovered the transcriptional landscape and phenotypic heterogeneity of aortic macrophages and monocyte-derived dendritic cells in atherosclerotic and identified previously unrecognized macrophage populations and their gene expression signature, suggesting specialized functions. Our findings will open up novel opportunities to explore distinct myeloid cell populations and their functions in atherosclerosis.
The definition of leukocyte diversity by high-dimensional analyses enables a fine-grained analysis of aortic leukocyte subsets, reveals new immunologic mechanisms and cell-type-specific pathways, and establishes a functional relevance for lesional leukocytes in human atherosclerosis.
The diverse leukocyte infiltrate in atherosclerotic mouse aortas was recently analyzed in 9 single cell RNA-Seq (scRNA-Seq) and 2 mass cytometry (CyTOF) studies. In a comprehensive meta-analysis, we demonstrate four macrophage subsets: resident, inflammatory, IFNIC and Trem2 foamy macrophages. We also find that monocytes, neutrophils, dendritic cells, natural killer cells, innate lymphoid cells-2 (ILC2) and CD8 T cells form prominent and separate populations. The CD4 T cells show a large population of Th17-like cells, which also contain γδ T cells. A small number of Tregs and Th1 cells is also identified. The present meta-analysis overcomes limitations of individual studies that, because of their experimental approach, overor under-represent certain cell populations. CyTOF identifies an even larger number of clusters, suggesting that surface markers provide more discriminatory information than transcriptomes. The present analysis provides evidence to further resolve some long-standing controversies in the field. First, Trem2 + foamy macrophages are not pro-inflammatory, but interferon-inducible cell (IFNIC) and inflammatory macrophages are. Second, about half of all foam cells are smooth muscle cell-derived, retaining smooth muscle cell transcripts rather than transdifferentiating to macrophages. Third, Pf4, which had been considered specific for platelets and megakaryocytes, is also prominently expressed in resident vascular macrophages. Finally, the discovery of a prominent ILC2 cluster links the scRNA-Seq work to recent flow cytometry data suggesting a strong atheroprotective role of ILC2 cells. This resolves apparent discrepancies regarding the role of Th2 cells in atherosclerosis based on studies that pre-dated the discovery of ILC2 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.