This study explored whether chlorogenic acid (CGA) and coffee have protective effects against retinal degeneration. Under hypoxic conditions, the viability of transformed retinal ganglion (RGC-5) cells was significantly reduced by treatment with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP). However, pretreatment with CGA attenuated cell death in a concentration-dependent manner. In addition, CGA prevented the up-regulation of apoptotic proteins such as Bad and cleaved caspase-3. Similar beneficial effects of both CGA and coffee extracts were observed in mice that had undergone an optic nerve crush (ONC) procedure. CGA and coffee extract reduced cell death by preventing the down-regulation of Thy-1. Our in vitro and in vivo studies demonstrated that coffee and its major component, CGA, significantly reduce apoptosis of retinal cells induced by hypoxia and NO, and that coffee consumption may help in preventing retinal degeneration.
CGA and coffee metabolites, especially, CA, and DHCA, reach the eye, where they can significantly reduce apoptosis induced by hypoxia and optic nerve crush stress, and thus prevent retinal degeneration.
The present study was carried out to investigate the antioxidative and neuroprotective effects of sea buckthorn ( L.) leaves (SBL) harvested at different times. Reversed-phase high-performance liquid chromatography analysis revealed five major phenolic compounds: ellagic acid, gallic acid, isorhamnetin, kaempferol, and quercetin. SBL harvested in August had the highest total phenolic and flavonoid contents and antioxidant capacity. Treatment of neuronal PC-12 cells with the ethyl acetate fraction of SBL harvested in August increased their viability and membrane integrity and reduced intracellular oxidative stress in a dose-dependent manner. The relative populations of both early and late apoptotic PC-12 cells were decreased by treatment with the SBL ethyl acetate fraction, based on flow cytometry analysis using annexin V-FITC/PI staining. These findings suggest that SBL can serve as a good source of antioxidants and medicinal agents that attenuate oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.